Контакты

Сложности дифференциальной диагностики синдрома нунан. Мутации de novo при неврологических и психических расстройствах - блог доктора Минутко

Шизофрения - одна из самых загадочных и сложных болезней, причем во многих смыслах. Ее тяжело диагностировать - до сих пор нет консенсуса о том, одно это заболевание или много похожих друг на друга. Ее сложно лечить - сейчас есть лишь препараты, которые подавляют т. н. позитивные симптомы (вроде бреда), но они не помогают возвратить человека к полноценной жизни. Шизофрению сложно исследовать - ни одно другое животное кроме человека ей не болеет, поэтому и моделей для ее изучения почти нет. Шизофрению очень тяжело понять с генетической и эволюционной точки зрения - она полна противоречий, которые биологи пока не могут разрешить. Однако хорошие новости заключаются в том, что в последние годы, наконец, дело вроде бы сдвинулись с мертвой точки. Об истории открытия шизофрении и первых результатах ее изучения нейрофизиологическими методами мы уже . На этот раз речь пойдет о том, как ученые ищут генетические причины возникновения болезни.

Важность этой работы даже не в том, что шизофренией болеет почти каждый сотый человек на планете и прогресс в этой области должен хотя бы радикально упростить диагностику, - даже если создать хорошее лекарство сразу и не получится. Важность генетических исследований в том, что они уже сейчас меняют наши представления о фундаментальных механизмах наследования сложных признаков. Если ученым все-таки удастся понять, как может «прятаться» в нашей ДНК такая сложная болезнь как шизофрения, это будет означать радикальный прорыв в понимании организации генома. И значение такой работы выйдет далеко за пределы клинической психиатрии.

Сначала немного сырых фактов. Шизофрения - это тяжелое, хроническое, ведущее к инвалидности психическое заболевание, поражающее обычно людей в молодом возрасте. От нее страдает около 50 миллионов человек по всему миру (немногим менее 1% популяции). Заболевание сопровождается апатией, безволием, часто галлюцинациями, бредом, дезорганизацией мышления и речи, моторными нарушениями. Симптомы обычно становятся причиной социальной изоляции и снижения работоспособности. Повышенный риск суицида у больных шизофренией, а также сопутствующие соматические заболевания приводят к тому, что общая продолжительность жизни у них снижается на 10-15 лет. Кроме того, больные шизофренией имеют меньше детей: мужчины имеют в среднем на 75 процентов, женщины - на 50 процентов .

Последние полвека стали временем бурного прогресса во многих областях медицины, однако этот прогресс почти не затронул профилактику и лечение шизофрении. Не в последнюю очередь это связано с тем, что мы до сих пор не имеем внятного представления о том, нарушение каких именно биологических процессов является причиной развития заболевания. Такой дефицит понимания привел к тому, что со времени появления на рынке первого антипсихотического препарата хлорпромазина (торговое название: «Аминазин») более 60 лет назад так и не произошло качественного изменения в лечении болезни. Все ныне существующие одобренные для лечения шизофрении антипсихотики (как типичные, включая хлорпромазин, так и атипичные) имеют один и тот же основной механизм действия: они снижают активность дофаминовых рецепторов, что устраняет галлюцинации и бред, но, к сожалению, слабо влияет на негативную симптоматику вроде апатии, безволия, расстройств мышления и т. д. Про побочные эффекты мы даже не упоминаем. Общее разочарование в исследованиях шизофрении проявляется в том, что фармацевтические компании уже давно уменьшают финансирование разработки антипсихотиков , - и это при том, что общее число клинических испытаний только растет. Однако надежда на прояснение причин возникновения шизофрении пришла с довольно неожиданной стороны - она связана с беспрецедентным прогрессом в молекулярной генетике.

Коллективная ответственность

Еще первые исследователи шизофрении заметили, что риск заболеть тесно связан с наличием больных родственников. Попытки установить механизм наследования шизофрении были предприняты почти сразу после переоткрытия законов Менделя, в самом начале XX века. Однако, в отличие от многих других болезней, шизофрения никак не хотела укладывалась в рамки простых менделевских моделей. Несмотря на высокую наследуемость, связать ее с одним или несколькими генами не получалось, поэтому к середине века все большей популярностью стали пользоваться т. н. психогенные теории развития болезни. В согласии с крайне популярным к середине века психоанализом, эти теории объясняли видимую наследуемость шизофрении не генетикой, а особенностями воспитания и нездоровой атмосферой внутри семьи. Появилось даже такое понятие как «шизофреногенные родители».

Однако теория эта, не смотря на свою популярность, прожила недолго. Окончательную точку в вопросе о том, является ли шизофрения наследственной болезнью, поставили психогенетические исследования, проведенные уже в 60-70-е годы. Это были прежде всего близнецовые исследования, а также исследования приемных детей. Суть близнецовых исследований заключается в сравнении вероятностей проявления какого-то признака - в данном случае развития заболевания - у одно- и разнояйцевых близнецов. Поскольку разница в действии среды на близнецов не зависит от того однояйцевые они или разнояйцевые, то различия в этих вероятностях должны происходит главным образом от того, что однояйцевые близнецы генетически идентичны, а разнояйцевые имеют в среднем лишь половину общих вариантов генов.

В случае шизофрении оказалось, что конкордантность однояйцевых близнецов более чем в 3 раза превышает конкордантность разнояйцевых: для первых она составляет приблизительно 50 процентов, а для вторых - менее 15 процентов. Эти слова надо понимать так: если у вас есть страдающий шизофренией однояйцевый брат-близнец, то вы сами заболеете с вероятностью в 50 процентов. Если же вы с братом разнояйцевые близнецы, то и риск заболеть составляет не более 15 процентов. Теоретические расчеты, которые дополнительно учитывают распространенность шизофрении в популяции, дают оценку вклада наследуемости в развитие болезни на уровне 70-80 процентов. Для сравнения, примерно так же наследуется рост и индекс массы тела - признаки, которые всегда считались тесно связанными с генетикой. Кстати, как оказалось позже, столь же высокая наследуемость характерна для трех из четырех остальных основных психических заболеваний: синдрома дефицита внимания и гиперактивности, биполярного расстройства и аутизма.

Результаты близнецовых исследований полностью подтвердились при изучении детей, которые родились у больных шизофренией и были усыновлены в раннем младенчестве здоровыми приемными родителями. Оказалось, что риск заболеть шизофренией у них не снижен по сравнению с детьми, воспитанными своими родителями-шизофрениками, что однозначно указывает на ключевую роль генов в этиологии.

И здесь мы подходим к одной из самых загадочных особенностей шизофрении. Дело в том, что если она так сильно наследуется и при этом очень негативно влияет на приспособленность носителя (напомним, что больные шизофренией оставляют по крайней мере вдвое меньше потомков, чем здоровые люди), то как ей удается сохраняться в популяции по крайней мере на протяжении ? Это противоречие, вокруг которого во многом и происходит главная борьба между разными теориями, получило название «эволюционного парадокса шизофрении»

До недавнего времени ученым было совершенно неясно, какие именно особенности генома больных шизофренией предопределяют развитие болезни. На протяжении десятилетий горячие споры велись даже не о том, какие именно гены изменены у больных шизофренией, а о том, какова общая генетическая «архитектура» болезни.

Имеется ввиду следующее. Геномы отдельных людей очень похожи друг на друга, отличия в среднем составляют менее 0,1 процента нуклеотидов. Некоторые из этих отличительных особенностей генома довольно широко распространены в популяции. Условно считается, что если они встречаются у более чем одного процента людей, их можно называть распространенными вариантами или полиморфизмами. Считается, что такие распространенные варианты появились в геноме человека более 100,000 лет назад, еще до первой эмиграции из Африки предков современных людей, поэтому они присутствуют обычно в большинстве человеческих субпопуляций. Естественно, что для того, чтобы существовать в значительной части популяции на протяжении тысяч поколений большая часть полиморфизмов должна быть не слишком вредна для своих носителей.

Однако в геноме каждого из людей есть и другие генетические особенности,- более молодые и более редкие. Большая часть из них не предоставляет носителям какого-либо преимущества, поэтому их частота в популяции, даже если они фиксируются, остается незначительной. Многие из этих особенностей (или мутаций) имеют более или менее выраженное отрицательное влияение на приспособленность, поэтому они постепенно удаляются негативным отбором. Им взамен в результате непрерывного мутационного процесса появляются другие новые вредные варианты. В сумме частота любой из новых мутаций почти никогда не превышает 0,1 процентов, и такие варианты называют редкими.

Так вот, под архитектурой болезни имеется ввиду то, какие именно генетические варианты - распространенные или редкие, имеющие сильный фенотипический эффект или лишь слегка увеличивающие риск развития болезни, - предопределяют ее появление. Именно вокруг это вопроса до недавнего времени и велись основные споры о генетике шизофрении.

Единственный факт, бесспорно установленный молекулярно-генетическими методами относительно генетики шизофрении за последнюю треть XX века - ее невероятная сложность. Сегодня очевидно, что предрасположенность к болезни определяется изменениями в десятках генов. При этом все предложенные за это время «генетические архитектуры» шизофрении можно объединить в две группы: модель «распространенная болезнь - распространенная изменчивость» («common disease - common variants», CV) и модель «распространенная болезнь - редкие варианты» («common disease - rare variants», RV). Каждая из моделей давала свои объяснения «эволюционного парадокса шизофрении».

RV vs. CV

Согласно модели CV генетическим субстратом шизофрении является некий набор генетических особенностей, полиген, - сродни тому, что определяет наследование количественных признаков вроде роста или массы тела. Такой полиген - это набор полиморфизмов, каждый из которых лишь немного влияет на физиологию (они называются «каузальными», т. к. хоть и не по одиночке, но приводят к развитию болезни). Чтобы поддерживать характерный для шизофрении довольно высокий уровень заболеваемости необходимо, чтобы этот полиген состоял из распространенных вариантов - ведь собрать в одном геноме много редких вариантов очень сложно. Соответственно и каждый человек имеет десятки таких рискованных вариантов в своем геноме. Суммарно все каузальные варианты определяют генетическую предрасположенность (liability) каждого отдельного человека к заболеванию. Предполагается, что для качественных сложных признаков, таких как шизофрения, имеется некое пороговое значение предрасположенности, и заболевание развивается только у тех людей, чья предрасположенность превышает это пороговое значение.

Пороговая модель предрасположенности к заболеванию. Показано нормальное распределение предрасположенности, отложенной по горизонтальной оси. У людей, чья предрасположенность превышает пороговое значение, развивается заболевание.

Впервые такая полигенная модель шизофрении была предложена в 1967 году одним из основателей современной психиатрической генетики Ирвингом Готтесманом, внесшим также значительный вклад в доказательство наследственной природы болезни. С точки зрения приверженцев модели CV сохранение высокой частоты каузальных вариантов шизофрении в популяции на протяжении многих поколений может иметь несколько объяснений. Во-первых, каждый отдельный такой вариант имеет довольно незначительное влияние на фенотип, такие «квази-нейтральные» варианты могут быть невидимы для отбора и оставаться распространенными в популяциях. Особенно это касается популяций с низкой эффективной численностью, где влияние случайности не менее важно, чем давление отбора - к таковым относится и популяция нашего вида.

С другой стороны, выдвигались предположения о присутствии в случае шизофрении т. н. балансирующего отбора, т. е. позитивного влияния «шизофренических полиморфизмов» на здоровых носителей. Это не так уж и сложно представить. Известно, например, что для шизоидных личностей с высокой генетической предрасположенностью к шизофрении (которых много среди близких родственников больных), характерен повышенный уровень творческих способностей, что может слегка увеличивать их адаптацию (это показано уже в нескольких работах). Популяционная генетика допускает такую ситуацию, когда положительный эффект каузальных вариантов у здоровых носителей может перевешивать негативные последствия для тех людей, у которых этих «хороших мутаций» оказалось слишком много, что привело к развитию болезни.

Вторая базовая модель генетической архитектуры шизофрении - модель RV. Она предполагает, что шизофрения - это собирательное понятие и каждый отдельный случай или семья историей заболевания - это отдельная квази-менделевская болезнь, связанная в каждом отдельном случае с уникальными изменениями в геноме. В рамках этой модели каузальные генетические варианты находятся под очень сильным давлением отбора и довольно быстро удаляются из популяции. Но так как в каждом поколении происходит небольшое количество новых мутаций, то между отбором и возникновением каузальных вариантов устанавливается некое равновесие.

С одной стороны, модель RV может объяснить, почему шизофрения очень хорошо наследуется, но ее универсальных генов до сих пор не найдено: ведь в каждой семье наследуются свои собственные каузальные мутации, а универсальных просто нет. С другой стороны, если руководствоваться этой моделью, то приходится признать, что мутации в сотнях разных генов могут приводить к одному и тому же фенотипу. Ведь шизофрения - заболевание распространенное, а возникновение новых мутаций происходит редко. Например, данные по секвенированию троек отец-мать-ребенок показывают, что в каждом поколении на 6 миллиардов нуклеотидов диплоидного генома возникает лишь 70 новых однонуклеотидных замен, из которых в среднем только несколько теоретически могут оказывать какое-либо влияние на фенотип, а мутации других типов - еще более редкое явление.

Тем не менее, некоторые эмпирические данные косвенно подтверждают такую модель генетической архитектуры шизофрении. Например, в начале 90-х годов было обнаружено, что около одного процента всех больных шизофренией имеют микроделецию в одной из областей 22-ой хромосомы. В подавляющем большинстве случаев эта мутация не наследуется от родителей, а происходит de novo в ходе гаметогенеза. Один из 2000 людей рождается с такой микроделецией, приводящей к разнообразным нарушениям в работе организма, названным «синдромом Ди Джорджи». Для страдающих этим синдромом характерны серьезные нарушения когнитивных функций и иммунитета, часто они сопровождаются гипокальциемией, а также проблемами с сердцем и почками. У четверти больных синдромом Ди Джорджи развивается шизофрения. Заманчиво было бы предположить, что и другие случаи шизофрении объясняются сходными генетическими нарушениями с катастрофическими последствиями.

Другим эмпирическим наблюдением косвенно подтверждающим роль de novo мутаций в этиологии шизофрении является связь риска заболеть с возрастом отца. Так, по некоторым данным среди тех, чьим отцам было больше 50 лет на момент рождения, в 3 раза больше больных шизофренией, чем среди тех, чьим отцам было меньше 30. С другой стороны, довольно давно выдвигались гипотезы о связи возраста отца с возникновением de novo мутаций. Такая связь, например, давно установлена для спорадических случаев другой (моногенной) наследственной болезни - ахондроплазии. Эта корреляция совсем недавно была подтверждена вышеупомянутыми данными по секвенированию троек: количество de novo мутаций связано с возрастом отца, но не с возрастом матери. По расчетам ученых от матери ребенок в среднем получает 15 мутаций независимо от ее возраста, а от отца - 25, если ему 20 лет, 55, если ему 35 лет и более 85, если он старше 50. То есть количество de novo мутаций в геноме ребенка увеличивается на две с каждым годом жизни отца.

Казалось, что вместе эти данные довольно ясно указывают на ключевую роль de novo мутаций в этиологии шизофрении. Однако ситуация на самом деле оказалась гораздо сложнее. Уже после разделения двух основных теорий, на протяжении десятилетий генетика шизофрении находилась в стагнации. Не было получено почти никаких достоверных воспроизводимых данных в пользу одной из них. Ни об общей генетической архитектуре болезни, ни о конкретных вариантах, влияющих на риск развития заболевания. Резкий скачок произошел за последние 7 лет и он связан прежде всего с технологическими прорывами.

В поисках генов

Секвенирование первого генома человека, последующее усовершенствование технологий секвенирования, а затем появление и повсеместное внедрение высокопроизводительного секвенирования позволили наконец получить более или менее полное представление о структуре генетической вариабельности в человеческой популяции. Эта новая информация сразу стала использоваться для полномасштабного поиска генетических детерминант предрасположенности к тем или иным заболеваниям, в том числе и к шизофрении.

Строятся подобные исследования примерно так. Сначала собирается выборка неродственных больных людей (cases) и примерно такая же по размеру выборка неродственных здоровых индивидуумов (controls). У всех этих людей определяется наличие тех или иных генетических вариантов - как раз в последние 10 лет у исследователей появилась возможность определять их на уровне целых геномов. Затем производится сравнение частоты встречаемости каждого из определенных вариантов между группами больных людей и группой контроля. Если при этом удается найти статистически достоверное обогащение того или иного варианта у носителей, его называют ассоциацией. Таким образом среди необъятного числа существующих генетических вариантов находятся те, которые связаны с развитием болезни.

Важной величиной, характеризующей эффект ассоциированного с болезнью варианта, является OD (odds ratio, отношение рисков), которое определяется как отношение шансов заболеть у носителей данного варианта по сравнению с теми людьми, у которых он отсутствует. Если величина OD варианта равна 10, это означает следующее. Если взять случайную группу носителей варианта и равную ей группу людей, у которых данный вариант отсутствует, окажется, что в первой группе больных будет в 10 раз больше, чем во второй. При этом чем ближе OD к единице у данного варианта, тем бóльшая выборка нужна для того, чтобы достоверно подтвердить то, ассоциация действительно существует, - что это генетический вариант действительно влияет на развитие болезни.

Подобные работы позволили к настоящему времени обнаружить по всему геному более десятка субмикроскопических делеций и дупликаций , ассоциированных с шизофренией (их называют CNV - copy number variations, одна из CNV как раз вызывает уже известный нам синдром Ди Джорджи). Для обнаруженных CNV, вызывающих шизофрению, OD колеблется в интервале от 4 до 60. Это высокие значения, однако из-за чрезвычайной редкости даже суммарно все они объясняют только очень небольшую часть наследуемости шизофрении в популяции. Что же отвечает за развитие болезни у всех остальных?

После сравнительно неудачных попыток найти такие CNV, которые бы вызывали развитие болезни не в нескольких редких случаях, а у значительной части популяции, сторонники «мутационной» модели возлагали большие надежды на другой тип экспериментов. В них сравнивают у больных шизофренией и здоровых контролей не наличие массивных генетических перестроек, а полные последовательности геномов или экзомов (совокупностей всех кодирующих белки последовательностей). Такие данные, получаемые с использованием высокопроизводительного секвенирования, позволяют находить редкие и уникальные генетические особенности, которые невозможно обнаружить другими методами.

Удешевление секвенирования сделало в последние годы возможным эксперименты такого типа на довольно больших выборках - включающих в последних работах несколько тысяч больных и столько же здоровых контролей. Каков результат? Увы, пока удалось обнаружить лишь один ген, редкие мутации в котором достоверно ассоциированы с шизофренией - это ген SETD1A , кодирующий один из важных белков, участвующих в регуляции транскрипции. Как и в случае с CNV, проблема тут та же самая: мутации в гене SETD1A не могут объяснять сколько-нибудь значимой части наследуемости шизофрении из-за того, что они просто очень редкие.


Связь распространенности ассоциированных генетических вариантов (по горизонтальной оси) и их влияния на риск развития шизофрении (OR). На основном графике красными треугольниками показаны некоторые из обнаруженных к настоящему времени CNV, ассоциированные с болезнью, синими кружками – SNP по данным GWAS. Во врезе в тех же координатах представлены области редких и частых генетических вариантов.

Есть указания на то, что существуют и другие редкие и уникальные варианты, которые влияют на предрасположенность к шизофрении. И дальнейшее увеличение выборок в экспериментах с использованием секвенирования должно помочь отыскать некоторые из них. Однако, несмотря на то, что исследование редких вариантов еще может принести некоторое количество ценной информации (особенно эта информация будет важна для создания клеточных и животных моделей шизофрении), большинство ученых в настоящее время сходятся во мнении, что редкие варианты играют лишь второстепенную роль в наследуемости шизофрении, а модель CV намного лучше описывает генетическую архитектуру болезни. Убежденность в верности CV модели пришла прежде всего с развитием исследований типа GWAS, о которых мы подробно расскажем во второй части. Коротко говоря, исследования такого типа позволили обнаружить ту самую распространенную генетическую изменчивость, описывающую значительную долю наследуемости шизофрении, существование которой предсказывалось моделью CV.

Дополнительным подтверждением CV модели для шизофрении является связь между уровнем генетической предрасположенности к шизофрении и так называемыми расстройствами шизофренического спектра. Еще ранние исследователи шизофрении заметили, что среди родственников больных шизофренией часто встречаются не только другие больные шизофренией, но и «эксцентрические» личности со странностями характера и симптоматикой сходной с шизофренической, но выраженной менее ярко. Впоследствии подобные наблюдения привели к концепции, согласно которой существует целый набор болезней, для которых характерны более или менее выраженные нарушения в восприятии реальности. Эта группа болезней получила название расстройства шизофренического спектра. Помимо различных форм шизофрении к ним относят бредовые расстройства, шизотипическое, параноидное и шизоидное расстройства личности, шизоаффективное расстройство и некоторые другие патологии. Готтесман, предлагая свою полигенную модель шизофрении, предположил, что у людей с субпороговыми значениями предрасположенности к болезни могут развиваться другие патологии шизофренического спектра, причем тяжесть заболевания коррелирует с уровнем предрасположенности.


Если эта гипотеза верна, логично предположить, что генетические варианты, обнаруженные как ассоциированные с шизофренией, будут обогащены и среди людей, страдающих расстройствами шизофренического спектра. Для оценки генетической предрасположенности каждого отдельного человека используется специальная величина, называемая уровнем полигенного риска (polygenic risk score). Уровень полигенного риска учитывает суммарные вклад всех идентифицированных в GWAS распространенных рискованных вариантов, имеющихся в геноме данного человека, в предрасположенность к болезни. Оказалось, что, как и предсказывала модель CV, значения уровня полигенного риска коррелируют не только с самой шизофренией (что тривиально), но и с другими болезнями шизофренического спектра, причем тяжелым типам расстройств соответствуют более высокие уровни полигенного риска.

И все-таки остается одна проблема - феномен «старых отцов». Если большая часть эмпирических данных подтверждает полигенную модель шизофрении, как согласовать с ней давно известную связь между возрастом отцовства и риском детей заболеть шизофренией?

Некогда было выдвинуто изящное объяснение этого феномена с точки зрения модели CV. Предполагалось, что позднее отцовство и шизофрения не являются соответственно причиной и следствием, а представляют собой два следствия общей причины, а именно генетической предрасположенности поздних отцов к шизофрении. С одной стороны, высокий уровень предрасположенности к шизофрении может коррелировать у здоровых мужчин с более поздним отцовством. С другой стороны, очевидно, что высокая предрасположенность отца предопределяет повышенную вероятность того, что его дети заболеют шизофренией. Выходит, что мы можем иметь дело с двум независимыми корелляциями, а значит накопление мутаций в предшественниках сперматозоидов у мужчин можетпочти никак не влиять на развитие шизофрении у их потомков. Недавно полученные результаты моделирования , учитывающего эпидемиологические данные, а также свежие молекулярные данные по частоте de novo мутаций, хорошо согласуются именно с таким объяснением феномена «старых отцов».

Таким образом, в настоящий момент можно считать, что убедительных аргументов в пользу «мутационной» RV модели шизофрении уже почти не осталось. А значит ключ к этиологии болезни лежит в том, какой именно набор распространенных полиморфизмов вызывает шизофрению в соответсвии с CV-моделью. Тому, как этот набор ищут генетики и что им уже удалось обнаружить, будет посвящена вторая часть нашей истории.

Аркадий Голов
С диагнозом врожденного порока сердца (ВПС) рождается 0.8% детей. Поскольку во многих случаях заболевание проявляется спорадически, в развитии данного заболевания, возможно, играет роль de novo мутагенез. Zaidi et al., сравнив количество de novo мутаций у 362 тяжело больных ВПС и 264 контролей, пришли к выводу, что у больных ВПС количество de novo мутаций, затрагивающих структуру белков, экспрессирующихся в процессе развития сердца, значительно больше, чем в контрольной группе (с показателем отношения шансов 7.5)

Для сравнения количества de novo мутаций для каждого из случаев проводили параллельное секвенирование экзомов испытуемого и его родителей (трио). Особенно много (по отношению к контрольной группе) у больных ВПС несинонимичных замен было обнаружено в генах, вовлеченных в метилирование, деметилирование и распознавание метилирования лизина 4 гистона 3, а также отвечающих за убиквитинилирование H2BK120, которое необходимо доя метилирования H3K4. Особенность этих генов состоит в том, что каждая из мутаций в них ведет к нарушению экспрессии сразу нескольких генов, играющих важную роль в развитии организма.

Интересным представляется то, что по результатам аналогичного исследования, проведенного на больных аутизмом, гены, участвующие в распознавании метилирования H3K4 (СHD7, CHD8 и другие), также попали в список кандидатов. В работе перечисляются мутации, общие для обоих заболеваний (аутизма и ВПС), и никогда ранее не обнаруженные в норме. Авторы предполагают, что по подобному механизму могут развиваться и другие наследственные заболевания.

Источник
Nature. 2013 May 12. De novo mutations in histone-modifying genes in congenital heart disease. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, Depalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe"er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP.

Подпись к рисунку
De novo мутации в метаболических путях H3K4 и H3K27. На рисунке перечислены гены, мутации в которых вляют на метилирование, деметилирование и узнавание гистоновых модификаций. Гены, несущие мутации типа сдвига рамки считывания и в сайтах сплайсинга, отмечены красным; гены, несущие несинонимичные замены, показаны синим. Обозначение SMAD (2) означает, что данная мутация была обнаружена сразу у двух пациентов. Гены, продукты которых работают в комплексе, обведены в прямоугольник.

Поблагодарили (4) :

Детекция мутации denovo в гене дистрофина и её значение для медико-генетического консультирования при мышечной дистрофии Дюшенна

(клиническое наблюдение)

Муравлева Э.А., Стародубова А.В, Пышкина Н.П., Дуйсенова О.С.

Научный руководитель: д.м.н. доц. Колоколов О.В.

ГБОУ ВПО Саратовский ГМУ им. В.И. Разумовского Минздрава РФ

Кафедра неврологии ФПК и ППС им. К.Н. Третьякова

Введение. Мышечная дистрофия Дюшенна (МДД) относится к наиболее часто встречающимся наследственным нервно-мышечным болезням. Распространенность её составляет 2-5: 100000 населения, популяционная частота - 1: 3500 новорожденных мальчиков. Эта форма мышечной дистрофии впервые описана Edward Meryon (1852г.) и Guillaume Duchenne (1861г.).

Заболевание характеризуется Х-сцепленным рецессивным типом наследования и тяжелым, прогрессирующим течением. МДД обусловлена мутацией в гене дистрофина, локус которого локализован на Xp21.2. Около 30% случаев обусловлены мутациями de novo, 70% - носительством мутации матерью пробанда. Дистрофин отвечает за соединение цитоскелета каждого мышечного волокна с основной базальной пластинкой (внеклеточного матрикса) через белковый комплекс, который состоит из многих субъединиц. Отсутствие дистрофина приводит к проникновению избыточного кальция в сарколему (клеточную мембрану). Мышечные волокна подвергаются некрозу, происходит замещение мышечной ткани жировой, а также соединительной.

Современная диагностика МДД основана на оценке соответствия проявлений болезни клинико-анамнестическим и лабораторно-инструментальным (креатин-киназа сыворотки крови (ККС), электронейромиография (ЭНМГ), гистохимическое исследование мышечного биоптата) критериям, генеалогическом анализе и данных молекулярно-генетического исследования.

Проведение медико-генетического консультирования в настоящее время во многих семьях позволяет предупредить рождение больного ребенка. Пренатальная ДНК диагностика на ранних сроках беременности в семьях, имеющих ребенка, страдающего МДД, позволит выбрать дальнейшую тактику для родителей и, возможно, досрочно прекратить беременность в случае наличия заболевания у плода.

В ряде случаев клиническая картина наблюдается у женщин - гетерозиготных носительниц мутантного гена в виде увеличения икроножных мышц, умеренно выраженной мышечной слабости, снижения сухожильных и периостальных рефлексов, по данным параклинических исследований повышается уровень ККС. Кроме того, классические клинические проявления МДД могут возникать у женщин с синдромом Шерешевского-Тернера (генотип 45, ХО).

Клинический пример. В нашей клинике наблюдается мальчик К., 7 лет, который предъявляет жалобы на слабость в мышцах рук и ног, утомляемость при длительной ходьбе. Мама ребенка отмечает у него периодические падения, затруднения при подъеме по лестнице, нарушение походки (по типу «утиной»), трудности при вставании из положения сидя, увеличение икроножных мышц в объеме.

Раннее развитие ребенка протекало без особенностей. В возрасте 3-х лет окружающие заметили нарушения двигательных функций в виде появления трудностей при ходьбе по лестнице, при вставании, ребенок не принимал участия в подвижных играх, стал быстро уставать. Затем изменилась походка по типу «утиной». Наросли трудности при вставании из положения сидя или из положения лежа: поэтапное вставание «лесенкой» с активным использованием рук. Постепенно стало заметным увеличение икроножных и некоторых других мышц в объеме.

В неврологическом осмотре ведущим клиническим признаком является симметричный проксимальный периферический тетрапарез, более выраженный в ногах (мышечная сила в проксимальных отделах верхних конечностей - 3-4 балла, в дистальных - 4 балла, в проксимальных отделах нижних конечностей - 2-3 балла, в дистальных - 4 балла). Походка изменена по типу «утиной». Использует вспомогательные («миопатические») приемы, например вставание «лесенкой». Мышечный тонус снижен, контрактур нет. Гипотрофия мышц тазового и плечевого пояса. «Миопатические» черты, например в виде широкого межлопаточного пространства. Имеется псевдогипертрофия икроножных мышц. Сухожильные и периостальные рефлексы - без достоверной разницы сторон; биципитальные - низкие, триципитальные и карпорадиальные - средней живости, коленные и ахилловы - низкие. На основании клинических данных заподозрена МДД.

При исследовании ККС её уровень составил 5379 ед/л, что в 31 раз выше нормы (норма - до 171 ед/л). По данным ЭНМГ зарегистрированы признаки, более характерные для умеренно текущего первично-мышечного процесса. Таким образом, полученные данные подтвердили наличие у пациента МДД.

Помимо пробанда осмотрены его родители и старшая родная сестра. Ни у кого из родственников пробанда клинических проявлений МДД не наблюдалось. Однако у матери замечено некоторое увеличение икроножных мышц в объеме. По данным генеалогического анализа пробанд является единственным заболевшим в семье. При этом нельзя исключить, что мать ребенка и родная сестра пробанда являются гетерозиготными носительницами мутантного гена (рис. 1).

Рис. 1 Родословная

В рамках медико-генетического консультирования семья К. была обследована на предмет наличия/отсутствия делеций и дупликаций в гене дистрофина. Молекулярно-генетический анализ в лаборатории ДНК-диагностики МГНЦ РАМН выявил у пробанда К. делецию 45 экзона, что окончательно подтверждает установленный клинический диагноз МДД. У матери делеция 45 экзона, выявленная у сына, не обнаружена. У сестры в результате анализа делеция 45 экзона, выявленная у брата, не найдена. Следовательно, у исследуемого мутация, скорее всего, имеет происхождение de nоvo, однако также она может явиться результатом герминального мозаицизма у матери. Соответственно, при мутации de novo риск рождения больного ребенка у матери будет определяться популяционной частотой данной мутации (1:3500, ‹‹1%), что значительно меньше, нежели при Х-сцепленном рецессивном типе наследования (50% мальчиков). Поскольку невозможно полностью исключить, что мутация может явиться результатом герминального мозаицизма, при котором наследование по законам Менделя нарушается, рекомендуется проведение пренатальной диагностики при последующей беременности у матери и сестры пробанда.

Заключение. В настоящее время у врача есть широкий арсенал симптоматических средств, используемых в лечении МДД, однако, несмотря на достижения науки, этиологическое лечение МДД до сих пор не разработано, эффективных препаратов для заместительного лечения при МДД не существует. Согласно недавним исследованиям стволовых клеток, существуют перспективные векторы, которые могут заменить поврежденные мышечные ткани. Однако, в настоящее время, возможно лишь симптоматическое лечение, направленное на улучшение качества жизни больного. В этой связи ранняя диагностика МДД играет важнейшую роль для своевременного проведения медико-генетического консультирования и выбора дальнейшей тактики планирования семьи. Для пренатальной ДНК диагностики исследование с помощью биопсии хориона (CVS) можно проводить на 11-14 неделях беременности, амниоцентез можно использовать после 15 недели, забор крови плода возможен примерно на 18 неделе. Если тестирование будет осуществлено на ранних сроках беременности, возможно досрочное прекращение беременности в случае наличия заболевания у плода. В ряде случаев целесообразно проведение преимплантационной ДНК диагностики с последующим экстракорпоральным оплодотворением.

Выводы. Для обеспечения раннего выявления и профилактики МДД необходимо шире использовать методы молекулярно-генетической диагностики; повысить настороженность практикующих врачей в отношении данной патологии. При мутации de novo риск рождения больного ребенка у матери определяется популяционной частотой мутации гена дистрофина. В случаях носительства мутации матерью пробанда требуется пренатальная или перимплантационная ДНК диагностика с целью планирования семьи.



Понравилась статья? Поделитесь ей