Контакты

Естественный врожденный иммунитет. Врожденный иммунитет. Врожденный и приобретенный иммунитет

Защитной реакцией или иммунитетом называется ответ организма на внешнюю опасность и раздражители. Множество факторов в теле человека способствуют его защите от различных болезнетворных организмов. Что такое врождённый иммунитет, как происходит защита организма и в чем заключается ее механизм?

Врожденный и приобретенный иммунитет

Само понятие иммунитета связано с эволюционно приобретенными способностями организма препятствовать попаданию в него чужеродных агентов. Механизм борьбы с ними разный, так как виды и формы иммунитета отличаются своим многообразием и характеристиками. По происхождению и формированию защитный механизм может быть:

  • врожденный (неспецифический, естественный, наследственный) – защитные факторы в теле человека, которые были сформированы эволюционно и помогают бороться с чужеродными агентами с самого начала жизни; также данный вид защиты обуславливает видовую невосприимчивость человека к заболеваниям, которые свойственны животным, растениям;
  • приобретенный – защитные факторы, которые формируются в процессе жизни, может быть естественным и искусственным. Естественная защита формируется после перенесенного воздействия, вследствие чего организм способен приобретать антитела к данному опасному агенту. Искусственная защита связана с введением в организм готовых антител (пассивная) или ослабленной формы вируса (активная).

Свойства врожденного иммунитета

Жизненно важным свойством врожденного иммунитета является постоянное наличие в организме естественных антител, которые обеспечивают первичную реакцию на вторжение патогенных организмов. Важное свойство естественной ответной реакции – система комплимента, которая представляет собой комплекс белков в крови, которые обеспечивают распознавание и первичную защиту от чужеродных агентов. Данная система выполняет следующие функции:

  • опсонизация – процесс присоединения элементов комплекса к поврежденной клетке;
  • хемотаксис – совокупность сигналов посредством химической реакции, которая привлекает другие иммунные агенты;
  • мембранотропный повреждающий комплекс – белки комплимента, которые разрушают защитную мембрану опсонизированных агентов.

Ключевое свойство естественной ответной реакции – первичная защита, вследствие которой организм может получить информацию о новых для него чужеродных клеток, вследствие чего создается уже приобретенный ответ, который при дальнейшем столкновении с аналогичными патогенами будет уже готов для полноценной борьбы, без привлечения других факторов защиты (воспаления, фагоцитоза и т.д.).

Формирование врожденного иммунитета

Неспецифическая защита есть у каждого человека, она закреплена генетически, способна передаваться по наследству от родителей. Видовой особенностью человека является то, что он не восприимчив к ряду болезней, характерных для других видов. Для формирования врожденного иммунитета важную роль играет внутриутробное развитие и грудное вскармливание после рождения. Мать передает своему ребенку важные антитела, которые закладывают основу его первых защитных сил. Нарушение формирования естественной защиты может привести к иммунодефицитному состоянию из-за:

Факторы врожденного иммунитета

Что такое врождённый иммунитет и в чем состоит механизм его действия? Совокупность общих факторов врожденного иммунитета призваны создать определенную линию защиты организма от чужеродных агентов. Данная линия состоит из нескольких защитных барьеров, которые выстраивает организм на пути патогенных микроорганизмов:

  1. Эпителий кожи, слизистые оболочки – первичные барьеры, которые обладают колонизационной резистентностью. Вследствие проникновения патогена развивается воспалительная реакция.
  2. Лимфатические узлы – важная защитная система, которая борется с патогеном до внедрения его в систему кровообращения.
  3. Кровь – при попадании инфекции в кровь развивается системный воспалительный ответ, при котором задействуются специальные форменные элементы крови. Если микробы не погибают в крови – инфекция распространяется на внутренние органы.

Клетки врожденного иммунитета

В зависимости от механизмов защиты бывает гуморальный и клеточный ответ. Совокупность гуморальных и клеточных факторов создают единую систему защиты. Гуморальная защита – ответ организма в жидкостной среде, внеклеточном пространстве. Гуморальные факторы врожденного иммунитета подразделяются на:

  • специфические – иммуноглобулины, которые вырабатывают В-лимфоциты;
  • неспецифические – секреты желез, сыворотка крови, лизоцим, т.е. жидкости, обладающие антибактериальными свойствами. К гуморальным факторам относят систему комплимента.

Фагоцитоз – процесс поглощения инородных агентов, происходит посредством клеточной активности. Клетки, которые участвуют в ответе организма подразделяются на:

  • Т-лимфоциты – долгоживущие клетки, которые подразделяются на лимфоциты с разными функциями (натуральные киллеры, регуляторы и др.);
  • В-лимфоциты – продуцируют антитела;
  • нейтрофилы – содержат антибиотические белки, имеют рецепторы хемотаксиса, поэтому мигрируют к месту воспаления;
  • эозинофилы – участвуют в фагоцитозе, отвечают за обезвреживание гельминтов;
  • базофилы – отвечают за аллергическую реакцию в ответ на раздражители;
  • моноциты – специальные клетки, которые превращаются в разные виды макрофагов (костной ткани, легких, печени и т.д.), обладают множеством функций, в т.ч. фагоцитоз, активизация комплимента, регулирование процесса воспаления.

Стимуляторы клеток врожденного иммунитета

Последние исследования ВОЗ показывают, что почти у половины населения планеты важные иммунные клетки – натуральные киллеры, находятся в дефиците. Из-за этого люди чаще подвержены инфекционным, онкологическим заболеваниям. Однако есть специальные вещества, которые стимулируют активность киллеров, к ним относятся:

  • иммуномодуляторы;
  • адаптогены (общеукрепляющие вещества);
  • трансферфакторные белки (ТБ).

Наибольшей эффективностью обладают ТБ, стимуляторы клеток врожденного иммунитета данного вида были обнаружены в молозиве и яичном желтке. Данные стимуляторы широко используют в медицине, их научились выделять из естественных источников, поэтому трансферфакторные белки сейчас находятся в свободном доступе в виде медицинских препаратов. Их механизм действия направлен на восстановление повреждений в системе ДНК, налаживание иммунных процессов видовой особенности человека.

Видео: врожденный иммунитет

Введение

Развитие иммунологии происходило неравномерно, причём практические достижения значительно опережали теоретические.

Длительное время иммунитет рассматривался, как защита только от инфекционных агентов, а иммунология была разделом инфекционной патологии. Важнейшие открытия, сделанные во второй половине ХХ века, позволили расширить рамки “старой классической иммунологии”, которая рассматривалась лишь в плане невосприимчивости к инфекционным болезням.

К ним относятся: открытие иммунологической толерантности, главного комплекса гистосовместимости и его функций, расшифровка молекулярно-генетических механизмов трансплатационного иммунитета и широкого спектра антигенраспознающих рецепторов В- и Т- лимфоцитов и иммуноглобулинов, получение моноклональных антител, создание клонально-селекционной теории и др. Было установлено, что функцией иммунной системы является защита от любой чужеродной генетической информации, которая может быть представлена не только инфекционными агентами, но и мутационно изменившимися собственными клетками, а также продуктами чужих генов.

Эта функция направлена на поддержание фенотипического гомеостаза в течение индивидуальной жизни организма. Успехи, достигнутые при изучении механизмов лимфоидного аппарата адаптивного иммунитета, отодвинули на второй план изучение факторов врожденного иммунитета. И только в конце ХХ века были обнаружены рецепторы клеток врожденного иммунитета, объясняющие каким образом они распознают чужеродное и развивают иммунный ответ.

Этот механизм является базовым и постоянно находится в активном состоянии, а в случае необходимости подключает лимфоидную систему адаптивного, более специфического иммунитета.

Целью данной работы являлось ознакомление с новыми литературными источниками о факторах и механизмах врожденного иммунитета, чтобы составить представление о его роли и значимости в общем иммунном ответе.

Факторы врожденного иммунитета

Термин “иммунитет” происходит от латинского слова “ummunitas” означает освобождение от каких-либо обязанностей. В медицину этот термин вошел во второй половине 20 века - начальный период активной разработки способов вакцинации для защиты людей от инфекционных заболеваний.

Иммунитет - есть способ защиты организма от всех антигенно - чужеродных веществ как экзогенной, так и эндогенной природы: биологический смысл заключается в обеспечении генетической целостности особей, вида в течение их индивидуальной жизни.

Защита от поступившего извне чужеродного антигена [АГ] в организм проявляется определенными реакциями, которые носят либо относительно “неспецифический” характер по отношению к вызвавшему их АГ, либо строго специфичны. “Неспецифические” защитные механизмы являются филогенетически более ранними и могут рассматриваться как предшественники специфических реакций. Это подтверждается тем, что имеются и переходные формы.

Иммунитет подразделяется на врожденный и приобретенный. Под врожденным иммунитетом подразумевают систему предсуществующих защитных факторов организма, как наслественно обусловленную. При возникновении необходимости защитить организм, например при попадании в него инфекционного возбудителя, в первую очередь “в бой” вступают факторы врожденного иммунитета.

Эти факторы начинают синтезироваться в первые часы. А также врожденный иммунитет обладает относительной специфичностью в распознавании “чужого”, способностью организовать воспаление, и возможностью “включать” в иммунный ответ факторы адаптивного иммунитета..

Какие же факторы и системы входят в “арсенал” врожденного иммунитета?

Это, прежде всего, Механические барьеры и физиологические факторы, которые препятствуют проникновению инфекционных агентов в организм. К ним относится неповрежденная кожа, различные секреты, покрывающие эпителиальные клетки и предотвращающие контакт между разнообразными патогенами и организмом. К факторам естественной резистентности можно отнести слюну, слёзы, мочу, мокроту и другие жидкие среды организма, которые способствуют выведению микробов. Здесь же и слущиваются с поверхности кожи клетки эпителия, ворсинки эпителиальных клеток дыхательных путей .

К естественным факторам резистентности можно отнести такие физиологические функции, как чихание, рвота, диарея, которые также способствуют элиминации патогенных агентов из организма. Сюда же следует отнести такие физиологические факторы, как температура тела, концентрация кислорода, гормональный баланс. Этот последний фактор имеет большое значение для иммунного ответа. Например, увеличение продукции кортикостероидов подавляет воспалительные процессы и снижает резистентность организма к инфекции.

Далее можно выделить химические и биохимические реакции, подавляющие инфекцию в организме. К факторам “неспецифической” защиты с таким действием относятся продукты жизнедеятельности сальных желез, содержащие антимикробные факторы в виде жирных кислот; фермент лизоцим, который содержится в различных секретах организма и обладает способностью разрушать грамположительные бактерии; низкая кислотность некоторых физиологических секретов, препятствующих колонизации организма различными микроорганизмами.

иммунитет клетка врожденный плазменный

Факторы врожденного иммунитета

Гуморальные Клеточные

Бактерицидные субстанции; Микрофаги (нейтрофилы);

пропердин; лизоцим; макрофаги (моноциты);

система комплемента; дендритные клетки;

катионные белки; СРБ; нормальные киллеры.

пептиды малой плотности;

цитокины; интерлейкины.

рис.1.1. Факторы врожденного иммунитета: гуморальные и клеточные.

Ответы по иммунологии,письменная часть

1.Современное определение иммунитета.Понятие о приобретенном и врожденном иммунитете .

Иммунитет - совокупность физиологических процессов и механизмов, направленных на сохранение антигенного гомеостаза организма от биологически активных веществ и существ, несущих генетически чужеродную антигенную информацию или от генетически чужеродных белковых агентов.

Под иммунитетом, по определению академика Р.В. Петрова, понимают «Способ защиты организма от живых тел и веществ, несущих признаки генетически чужеродной информации (включая микроорганизмы, чужеродные клетки, ткани или генетически изменившиеся собственные клетки, в том числе опухолевые)».

Врожденный и приобретенный иммунитет представляет собой две взаимодействующие части одной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции.

Врожденный иммунитет - наследственно закрепленная система защиты многоклеточных организмов от любых патогенных и непатогенных микроорганизмов, а также эндогенных продуктов тканевой деструкции.

Врождённый иммунитет - способность организма обезвреживать чужеродный и потенциально опасный биоматериал (микроорганизмы ,трансплантат ,токсины ,опухолевые клетки , клетки, инфицированныевирусом ),

существующая изначально, до первого попадания этого биоматериала в организм.

Система врождённого иммунитета намного более эволюционно древняя, чем системаприобретённого иммунитета , и присутствует у всех видов растений и животных, но подробно изучена только упозвоночных . По сравнению с системой приобретённого иммунитета система врождённого активируется при первом появлении патогена быстрее, но распознаёт патоген с меньшей точностью. Она реагирует не на конкретные специфическиеантигены , а на определённые классы антигенов, характерные дляпатогенных организмов (полисахариды клеточной стенки бактерий, двунитеваяРНК некоторых вирусов и т.п.).

У врождённого иммунитета есть клеточный (фагоциты ,гранулоциты ) и гуморальный (лизоцим ,интерфероны ,система комплемента ,медиаторы воспаления ) компоненты. Местная неспецифическая иммунная реакция иначе называетсявоспалением .

Приобретённый иммунитет - способность организма обезвреживать чужеродные и потенциально опасные микроорганизмы (или молекулы токсинов), которые уже попадали в организм ранее. Представляет собой результат работы системы высокоспециализированных клеток (лимфоцитов ), расположенных по всему организму. Считается, что система приобретённого иммунитета возникла у челюстноротых позвоночных . Она тесно взаимосвязана с гораздо более древней системой врождённого иммунитета , которая является основным средством защиты от патогенных микроорганизмов у большинства живых существ.

Различают активный и пассивный приобретённый иммунитет. Активный может возникать после перенесения инфекционного заболевания или введения в организмвакцины . Образуется через 1-2 недели и сохраняется годами или десятками лет. Пассивно приобретённый возникает при передаче готовыхантител от матери к плоду черезплаценту или сгрудным молоком , обеспечивая в течение нескольких месяцев

невосприимчивость новорожденных к некоторым инфекционным заболеваниям. Такой иммунитет можно создать и искусственно, вводя в организм иммунные сыворотки , содержащиеантитела против соответствующихмикробов илитоксинов (традиционно используют при укусах ядовитых змей).

Как и врождённый иммунитет, приобретённый иммунитет разделяют на клеточный (T-лимфоциты) и гуморальный (антитела, продуцируемые B-лимфоцитами; комплемент является компонентом как врождённого, так и приобретённого иммунитета).

2.Иммунная система

Иммунная система представляет собой совокупность специализированных органов, тканей и клеток, способных выполнять функцию иммунитета и другие жизненно важные

функции, такие, как регуляция и координация межсистемных связей. По крайней мере три системы: нервная, эндокринная и иммунная - составляют основу жизнедеятельности организма. Иммунологическая индивидуальность обеспечивает сохранение каждой особи в пределах вида.

Функция иммунной системы (а более конкретно - иммунитет) выходит далеко за рамки защиты от инфекционных заболеваний. Противораковый, трансплантационный иммунитет, иммунные взаимоотношения мать-плод, ликвидация пострадиационных последствий, неблагоприятных воздействий экологических факторов, иммунопрофилактика инфекционных и неинфекционных заболеваний и многие другие процессы реализуются иммунной системой.

Исходя из этого уникальность физиологической роли иммунной системы заключается в контроле генетического постоянства внутренней среды организма в период онтогенетического развития. Всё генетически чужеродное для конкретного организма элиминируется с участием его иммунной системы.

Иммунная система высокоспециализирована и обладает целым комплексом уникальных свойств, многие из которых не дублируются в других системах организма.

Следующие феномены определяют основные свойства иммунной системы:

высокая специфичность проявляется высокоспецифичным и селективным связыванием антител с конкретным антигеном, индуцировавшим их образование. Лимфоциты с помощью антигенспецифических рецепторов распознают антигенные молекулы, различающиеся 1-2 аминокислотными остатками, и удаляют их из организма. Упрощенная формула иммунной специфичности: «один антиген - одно антитело - один клон лимфоцитов»;

высокая степень чувствительности -

иммунокомпетентные клетки осуществляют распознавание антигена на уровне отдельных молекул. Взаимодействие «антиген-антитело» - одна из наиболее высокочув ствительных биологических реакций. Тесты, основанные на

(иммуноферментные, радиоиммунные и др.), позволяют идентифицировать пикограммовые и близкие к ним количества анализируемого вещества;

иммунологическая индивидуальность - для каждого организма характерен свой, контролируемый генетически тип иммунного ответа. Основной постулат иммуногенетики

- «конкретность иммунного ответа»;

Клональный принцип организациииммунокомпетентных клеток, проявляющийся в способности всех клеток в пределах отдельного клона отвечать только на одну антигенную детерминанту. Согласно клонально-селекционной теории Ф. Бернета, в иммунной системе формируются клоны лимфоцитов, способные распознать огромное количество (10 9 -10 и ) вариантов антигенных молекул, составляющих так называемый антигенный репертуар;

Иммунологическая память - способность иммунной системы (клеток памяти) отвечать ускоренно и усиленно на повторное введение антигена. Это свойство иммунной системы составляет основу анамнестического ответа на повторный контакт с антигеном (например, при инфекции или вакцинации);

Иммунная толерантность - специфическая неотвечаемость на антигены, в том числе на антигены собственного организма (аутоантигены). Нарушение этого свойства приводит к срыву толерантности и формированию аутоиммунной патологии;

Высокая способность иммунной системы к регенерации-

свойство иммунной системы к поддержанию гомеостаза лимфоцитов за счет пополнения пула «наивных» клеток и контроля популяции клеток памяти. Нарушение гомеостаза лимфоцитов (лимфопения) лежит в основе многих заболеваний, в первую очередь иммунодефицитных; -способность клеток иммунной системы к рециркуляции - перемещение клеток через кровеносную и лимфатическую систему обеспечивает единство и целостность иммунной системы. Лимфоциты, моноциты, нейтрофилы и другие клетки способны мигрировать через эндотелий кровеносных и лимфатических сосудов в центральные и периферические органы и ткани иммунной системы, а также в различные ткани в норме и при патологии (чаще воспаление). В циркуляции могут находиться практически все клеточные элементы иммунной системы, в том числе гемопоэтические стволовые клетки;

-«двойное распознавание» антигена Т-лимфоцитами - уникаль ная способность Т-лимфоцита распознавать чужеродные антигенные пептиды в ассоциации с собственными молекулами главного комплекса гистосовместимости (у человека с HLA). Подобный механизм высокоспециализирован и отсутствует в других системах организма; - неразборчивость иммунной системы.Иммунные механизмы не всегда работают во благо: в ряде случаев они могут оказывать иммуноагрессивное действие в собственном организме, вызывая тяжелую

патологию: аллергические, аутоиммунные, иммунокомплексные заболевания и др.;

Регуляторное действие на другие системы организма.

Иммунная система через прямые межклеточные контакты и опосредованно через

огромное количество медиаторных молекул (цитокины, хемокины, гормоны тимуса, пептиды и др.) оказывает регуляторное воздействие практически на все системы организма. Нарушение регуляторных механизмов лежит в основе многих заболеваний человека, часто с поражением органов и тканей, формально не включаемых в иммунную систему (например, поражение суставов, печени, кожи, ЦНС и др.). От того, насколько полноценно функционирует иммунная система, зависят многие процессы нормальной жизнедеятельности организма. Эта функция может быть непосредственно не связана с иммунитетом, но в процессе иммунного ответа выработка иммуноцитокинов значительно усиливается, и их действие распространяется на реализацию регуляторных воздействий как внутри, так и за пределами иммунной системы. Современная иммунология большое внимание уделяет изучению роли цитокинов в межсистемных регуляторных процессах.

Таким образом, наряду с нервной и эндокринной иммунная система служит одной из интегрирующих систем регуляции, действующих на уровне целого организма.

3.объекты исследования в иммунологии

1.1. ИНБРЕДНЫЕ ЖИВОТНЫЕ

Для проведения фундаментальных исследований в иммунологии лучший объект - инбредные мыши. Инбредные животные - это животные, полученные путем инбридинга (in breed - выводить породу, разводить), т.е. последовательных близкородственных скрещиваний с целью получения гомозиготного и генетически идентичного потомства. Среди потомков для дальнейших скрещиваний сначала отбирают особей по признакам внешнего сходства, в последующих поколениях уже тестируют на совпадение групп крови и приживление кожных лоскутов. Через 20 поколений и более такой селекции получают мышей с весьма высокой степенью гомозиготности, обозначаемых как чистая линия, в пределах которой все животные генетически почти идентичны (например, как однояйцевые близнецы у человека).

Главная цель выведения чистых линий мышей и исследований на них - получение возможности многократного повторения экспериментов на генетически одинаковых организмах, т.е. обеспечение воспроизводимости результатов исследований в высоком смысле этого понятия, что полностью исключено при решении многих иммунологических задач с использованием беспородных животных. Подобные проблемы существуют при оценке результатов иммунных процессов у человека.

Мыши стали исключительными экспериментальным животными в иммунологии в силу ряда причин, главные из которых следующие:

1) короткий срок беременности (21 сут) и множественное потомство от каждой самки (5-8 детенышей в одни роды) позволяют весьма быстро вывести чистые линии, что важно по вышеназванным причинам;

2) себестоимость содержания мышей по сравнению с таковой других млекопитающих наименьшая;

3) структура и функция иммунной системы мыши и человека во многом сходны;

4) выведение чистых линий мышей показало, что, например, некоторые из них (несмотря на гомозиготность) весьма крепкие и здоровые, т.е. не всякий инбридинг приводит к вырождению.

Кроме того, путем целенаправленного отбора тех или иных свойств созданы многочисленные линии мышей с точно заданными характеристиками, и это позволяет выбирать особей, необходимых для достижения конкретных научных целей. Характеристики животных разных линий занесены в соответствующие документы; на них ориентируются питомники по разведению чистолинейных мышей, имеющиеся во всех странах, где успешно занимаются проблемами экспериментальной иммунологии. Из наиболее прославленных питомников хотим упомянуть Джексоновскую лабораторию (The Jackson Laboratory) в США. Ежегодно она поставляет в университеты, медицинские институты и научно-исследовательские лаборатории всего мира приблизительно 2 млн животных 2500 разных линий, стоков и животных-моделей. Около 97% этих животных можно приобрести только в Джексоновской лаборатории. В каждом питомнике

разводимые и поддерживаемые линии мышей имеют паспорт, систематизированы в соответствующих базах данных и доступны для широкого применения. Известен гаплотип (Н-2) мышей разных линий, их окрас, поведенческие характеристики, особенности функционирования иммунной системы и прочие свойства, необходимые не только для иммунологических исследований, но и исследований в других областях биологии и медицины (онкология, фармакология, экология и т.д.).

БИОЛОГИЧЕСКИЕ МАТЕРИАЛЫ

ДЛЯ ИССЛЕДОВАНИЙ

Для исследования иммунной системы используются следующие биологические материалы.

1. Цельная периферическая кровь.

2. Сыворотка крови - жидкая фракция крови, освобожденная от фибриногена.

3. Плазма крови - жидкая фракция крови, содержащая фибриноген, следовательно, способная к образованию сгустков фибрина.

4. Клетки крови, отделенные от жидкой фракции.

5. Цереброспинальная жидкость.

6. Синовиальная жидкость.

7. Бронхоальвеолярный лаваж.

8. Выделения слизистых секретов половых органов (из канала шейки матки, влагалища, семенная жидкость).

9. Выделения из носа (смывы или адсорбция на пористые материалы).

10. Моча.

11. Супернатанты, полученные от культивируемых in vitro клеток

12. Гомогенаты тканей (биопсия или post mortem).

13. Цитоплазматические и ядерные компоненты клеток. Биологический материал разного происхождения отличается по

биохимическому составу, ионной силе, вязкости. Все эти

Общая система иммунитета человека состоит из неспецифического (врожденного, переданного генетическим путем) и специфического иммунитета, который формируется в течение его жизни. На неспецифический иммунитет приходится 60-65% от всего иммунного статуса организма. Система врождённого иммунитета осуществляет основную защиту у большинства живых многоклеточных организмов. представляют собой две взаимодействующие части одной очень сложной системы, обеспечивающей развитие иммунного ответа на генетически чужеродные субстанции. Долгие годы сосуществовали два противоположных «полюса» и взгляда на вопрос, кто же важнее и главнее в защите от инфекций - врожденный иммунитет или приобретенный.

Иммунитет врожденный и приобретенный

Система врожденного иммунитета представляет собой совокупность различных клеточных рецепторов, ферментов и интерферонов, обладающих противовирусными свойствами и создает мощный заслон попаданию в организм бактерий, вирусов, грибков и так далее. Врожденный иммунитет характерен тем, что для развития неспецифических иммунных реакций ему не требуется предварительного контакта с инфекционным агентом. Существует удивительно тесное сходство между системами врожденного иммунитета у самых различных животных. Это свидетельство того, что эволюционно самая древняя система неспецифического иммунитета имеет жизненно важное значение. Система врождённого иммунитета намного более эволюционно древняя, чем система приобретённого иммунитета, и присутствует у всех видов растений и животных, но подробно изучена только у позвоночных. Было время, когда система врожденного иммунитета у позвоночных животных считалась архаичной и устаревшей, однако сегодня доподлинно известно, что от состояния врожденного иммунитета во многом зависит функционирование системы приобретенного иммунитета. Действительно неспецифический иммунный ответ определяет эффективность специфического иммунного ответа. Теперь уже считается общепринятым, что система врожденного иммунитета инициирует и оптимизирует реакции специфического иммунитета, которые развиваются более медленно. Иммунитет врожденный и приобретенный тесно взаимодействуют друг с другом. Своеобразным посредником во взаимодействии обеих систем является система комплемента. Система комплемента состоит из группы сывороточных глобулинов, которые, взаимодействуя в определенной последовательности, разрушают стенки клеток как самого организма, так и клетки микроорганизмов, проникших в тело человека. Одновременно система комплемента активизирует специфический иммунитет человека . Система комплемента способна разрушить неправильно построенные клетки эритроцитов и опухолевых клеток. Система комплемента обеспечивает непрерывность иммунного ответа. Именно неспецифический иммунитет отвечает и несет контроль за уничтожение раковых (опухолевых) клеток. Поэтому создание различных вакцин против рака - это элементарная биохимическая безграмотность и профанация, поскольку никакая вакцина не способна формировать неспецифический иммунитет. Любая вакцина, наоборот, формирует исключительно специфический иммунитет.

Система врожденного иммунитета

Неспецифический иммунитет формируется в организме человека, начиная с внутриутробного развития. Так на 2 месяце беременности уже обнаруживаются первые фагоциты - гранулоциты, а моноциты появляются на 4 месяце. Эти фагоциты формируется из стволовых клеток, которые синтезируются в костном мозге, а затем эти клетки, попадают в селезенку, где с целью их активирования к ним добавляется углеводный блок системы рецепции "свой-чужой". После рождения ребенка, врожденный иммунитет поддерживается за счет работы клеток селезенки, где формируются растворимые компоненты неспецифического иммунитета. Таким образом, селезенка является местом постоянного синтеза клеточных и неклеточных компонентов неспецифического иммунитета. Врожденный иммунитет сегодня считают абсолютным, так как в подавляющем большинстве случаев этот иммунитет не удаётся нарушить заражением даже громадными количествами вполне вирулентного материала. Вирулентность (лат. Virulentus — «ядовитый»), степень болезнетворности (патогенности) данного инфекционного агента (вируса, бактерии или другого микроба). Вирулентность зависит, как от свойств инфекционного агента, так и от чувствительности инфицированного организма. Однако могут быть и исключения, свидетельствующие об относительности врожденного иммунитета. Врожденный иммунитет в некоторых случаях может быть снижен действием ионизирующей радиации и созданием иммунологической толерантности. Врожденный иммунитет является первой линией защиты организма млекопитающих против агрессоров. Инфекционные агенты и их структурные компоненты, которые добрались до слизистых кишечника, носоглотки, легких или попали внутрь организма, «запускают» врожденный иммунитет. Через рецепторы врожденного иммунитета происходит активация фагоцитов - клеток, которые «заглатывают» чужеродные микроорганизмы или частицы. Фагоциты (нейтрофилы, моноциты и макрофаги, дендритные клетки и другие) - основные клетки врожденной иммунной системы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в конкретное место при помощи цитокинов. Цитокины - сигнальные молекулы играют очень важную роль на всех этапах иммунного ответа. Одни цитокины выступают в качестве медиаторов реакций врожденного иммунитета, а другие контролируют реакции специфического иммунитета. В последнем случае цитокины регулируют активацию, рост и дифференцировку клеток. К числу наиболее важных цитокинов относятся и молекулы трансфер факторы , которые составляют основу линейки американских препаратов, которые получили название Трансфер Фактор .

NК-клетки и Трансфер Фактор

Цитокины регулируют и активность NK-клеток. Нормальные киллеры или NK-клетки - это лимфоциты, обладающие цитотоксической активностью, то есть способные прикрепляться к клеткам-мишеням, секретировать токсичные для них белки, таким образом, их уничтожая. NK-клетки распознают клетки, пораженные некоторыми вирусами, и опухолевые клетки. Они содержат на мембране рецепторы, реагирующие со специфическими углеводами поверхности клеток-мишеней. Снижение НК-клеточной активности и снижение общего числа НК-клеток связаны с развитием и быстрым прогрессированием таких заболеваний, как рак, вирусный гепатит, СПИД, синдром хронической усталости, синдром иммунодефицита и целый ряд аутоиммунных заболеваний . Повышение функциональной активности натуральных киллеров напрямую связано с проявлением противовирусного и противоопухолевого действия. Сегодня ведется активный поиск лекарственных средств, способных стимулировать именно NK-клетки. В этом специалисты видят перспективу для разработки противовирусных препаратов широкого спектра действия. Но на сегодняшний день создан только один препарат, который способный стимулировать NK-клетки - и это Трансфер Фактор! Доказано, что Трансфер Фактор максимально повышают активность NK-клеток. Трансфер Фактор классик повышает активность этих клеток на 103%, а это значительно больше по сравнению с другими адаптогенами , в том числе, с обычным молозивом , которое повышает активность NK-клеток на 23%. Но только подумайте, Трансфер Фактор плюс, повышает активность NK-клеток на 283%! А сочетание Трансфер фактор плюс и Трансфер фактор Эдвенсд еще больше усиливает данный эффект - повышает активность NK-клеток на 437%, практически в 5 раз, полностью восстанавливая их активность в нашем организме. Именно поэтому Трансфер Фактор сегодня актуален в современном мире, а для жителей мегаполисов Трансфер Фактор вообще жизненно необходим, так как активность NK-клеток у жителей городов в 4-5 раз меньше нормы. И это доказанный факт! Так как у «условно здоровых» людей в нашей стране уровень активности NK-клеток в несколько раз снижен, то повышение ее даже на 437% — всего лишь выход на норму компетентности. Следует помнить, что активность NK-клеток оценивается не по их количеству, которое возрастает незначительно, а по числу актов цитолиза — уничтожения мутировавших или инфицированных клеток. Речь идет не о «подстегивании» иммунной системы, а о повышении ее компетентности, то есть способности различать «врагов». Компетентная иммунная система достигает больших результатов и гораздо меньшими усилиями. Производство линейки препаратов Трансфер Фактор началось в соединенных Штатах более пятнадцати лет назад. Компания 4 life , заинтересовавшись исследованиями специалистов, получила патент на производство этого иммуномодулятора. В нашей стране Трансфер Фактор сегодня чрезвычайно востребован и среди врачей, и среди простых людей. Трансфер Фактор также получил высочайшую оценку Министерства Здравоохранения Украины, которая отражена в методическом письме МЗ Украины от 29.12.2011г. «Эффективность применения Трансфер Факторов в комплексе иммунореабилитационных мероприятий». Сегодня у наших врачей появилась возможность следовать за природой, действовать в согласии с иммунной системой, а не за нее с помощью препарата Трансфер Фактор. Такой подход позволяет получать результаты, не достижимые прежде.

Одним из наиболее важных обобщений в иммунологии конца XX и начала XXI в. стало создание научно обоснованного учения о врожденном (от англ. ита{е ттипНу), или естественном, природном, и адаптивном (от англ.

АйауИуе ттипНу), или приспособительном, приобретенном (от англ. асдшгес1 ттипНу), иммунитете. В иммунологической практике чаще используют термины «врожденный» и «адаптивный» иммунитет, врожденные и адаптивные компоненты иммунной системы, врожденный и адаптивный иммунный ответ. Оба варианта иммунитета реализуются через клеточные и гуморальные факторы. Ушли в прошлое такие термины, как «неспецифический иммунитет», «неспецифическая иммунологическая реактивность» и им подобные.

Врожденный и приобретенный иммунитет представляет собой две взаимодействующие части одной системы, обеспечивающей раз* витие иммунного ответа на генетически чужеродные субстанции.

Врожденный иммунитет - наследственно закрепленная система защиты многоклеточных организмов от любых патогенных и непатогенных микро­организмов, а также эндогенных продуктов тканевой деструкции.

Как самая ранняя форма иммунной защиты организма, врожденный иммунитет сформировался на начальных этапах эволюции многокле­точных организмов, до появления способности к перегруппировке генов иммуноглобулинов и ТСК, а также возможности узнавания «своего» и полноценной иммунной памяти. Доказательством этому служит наличие
разнообразных генов врожденной защиты у беспозвоночных животных и растений. Известно, что у беспозвоночных (например, у членистоногих) существуют клеточные элементы, обладающие фагоцитарной функцией, и гуморальные факторы типа противомикробных пептидов, лектинов и др., успешно распознающих и поражающих патогенные микроорганизмы. Все эти компоненты консервативны, наследуются и не подвергаются генетиче­ской модификации в течение жизни.

Охарактеризованы основные отличительные признаки системы врож­денного иммунитета.

* Врожденный иммунитет обеспечивает распознавание и элиминацию патогенов в первые несколько минут или часов после их проникнове­ния в организм, когда механизмы адаптивного иммунитета еще отсут­ствуют.

* Функция системы врожденного иммунитета осуществляется через раз­нообразные клеточные элементы (макрофаги, ДК, нейтрофилы, туч­ные клетки, эозинофилы, базофилы, ИК-клетки, ИКТ-клетки, некото­рые негемопоэтические клетки) и гуморальные факторы (естественные антитела, цитокины, комплемент, белки острой фазы, катионные противомикробные пептиды, лизоцим и др.) (см. табл. 1-1).

Клетки врожденной иммунной системы:

* не образуют клонов. Отсутствие клональности в организации врожден­ной иммунной системы - одно из ее основных отличий от адаптивной иммунной системы. В этом смысле каждая клетка врожденного имму­нитета действует индивидуально, тогда как при адаптивном иммунном ответе все клетки в пределах клона (сообщества) подчинены единой генетически детерминированной программе;

* не подвергаются негативной и позитивной селекции;

* участвуют в реакциях фагоцитоза, цитолиза, в том числе бактериолиза, нейтрализации, выработки цитокинов и др.

Распознавание патогенов клетками врожденного иммунитета реализу­ется через многочисленные рецепторные структуры, такие, как рецепторы- мусорщики (5шга?#ег-рецепторы), маннозные рецепторы, рецепторы ком­племента (СК1, СКЗ, СК4), лектиновые рецепторы и др. Особую группу рецепторов врожденного иммунитета составляют так называемые паттерн- распознающие рецепторы (англ. Раиет-Кесо%пШоп ЯесерШ - РКК).

Они распознают консервативные, общие для многих типов микроор­ганизмов структуры, так называемые патогенассоциированные молеку­лярные паттерны (англ. РаЪко%еп-А$$ос1а1ей Мо1еси1аг РаНетз - РАМР). В настоящее время интенсивно изучают структуру и функции рецепторов врожденного иммунитета, таких, как То11-подобные рецепторы (ТЪК), N00-1, N00-2, К1С и др. Рецепторы врожденной иммунной системы эво- люционно законсервированы.

То11-рецепторы впервые обнаружены у дрозофил. ТоИ-подобные (ТЬК) рецепторы у млекопитающих имеют сходную с ними структуру и функцию. Рецепторы этого семейства широко представлены на различных клетках иммунной системы (моноциты, ДК, лейкоциты и др.), а также на многих клетках организма (фибробласты, эндотелий, эпителий, кардиомиоциты и др.). Система ТЬК. более подробно рассмотрена ниже.

Факторы врожденного иммунитета не изменяются в процессе жизни организма, контролируются генами зародышевой линии и насле­дуются.

Активация врожденного иммунитета не формирует продолжи­тельной иммунной памяти, но служит обязательным условием раз­вития адаптивного иммунного ответа.

Все перечисленные функции крайне важны для защиты от патогенных микроорганизмов, но недостаточны для жизнедеятельности высокооргани­зованных многоклеточных организмов, таких, как позвоночные. Именно у них в процессе эволюции возникли новые иммунные компоненты и сфор­мировалась иммунная система, главной функцией которой стал контроль над генетическим постоянством внутренней среды многоклеточного орга­низма. Перед иммунной системой возникла задача распознать и запомнить «свое». Всё, что антигенно «свое», должно сохраниться, а всё, что антигенно «чужое», подлежит удалению из организма. В условиях многомиллионно­го разнообразия чужеродных антигенных структур невозможно обойтись небольшим набором генов, передаваемых по наследству (так называемых зародышевых генов - англ. рт Ипё).

В связи с новыми задачами формируется приобретенная (адаптивная) иммунная система с появлением целого ряда новых структур и свойств:

Клеточные компоненты: антигенраспознающие Т- и В-лимфоциты, антигенпрезентирующие, регуляторные, цитотоксические и другие клетки; молекулы: антитела;

Система генов главного комплекса гистосовместимости (у человека НЬА - от англ. Нитап Ьеикосу1е Апй$еп5)\

Механизм соматической перегруппировки генов ТСК и иммуногло­булинов (антител) из первоначально небольшого числа зародышевых генов.

В результате этого механизма под влиянием регуляторов генной пере­группировки (КАС1 и КАС2) из первоначального небольшого набора генов зародышевой линии, передаваемых по наследству, в процессе соматической рекомбинации генных сегментов V, Б,} и С, кодирующих молекулы антител или ТСК, создается огромное разнообразие распознающих элементов, кото­рые охватывают все существующие в природе антигены. После рождения иммунная система человека потенциально способна к узнаванию любого антигена и может дифференцировать антигены, различающиеся одним или несколькими аминокислотными остатками. На уровне тимуса и кост­ного мозга происходит элиминация или блокада (селекция) Т- и В-клеток, потенциально способных реагировать с аутологичными антигенами.

Ключевую роль в реакциях адаптивного иммунитета выполня­ют субпопуляции Т- и В-лимфоцитов, узнающие антигены с помощью антигенраспознающих рецепторов (ТСК и ВСК соответственно).

Т-лимфоциты способны распознавать антиген, только если он представ­лен антигенпрезентирующими клетками собственного организма с участи­ем молекул главного комплекса гистосовместимости I или II класса. Такими уникальными свойствами в организме обладают только Т-лимфоциты, и в этом смысле они являются истинными иммунокомпетентными клетками (иммуноцитами, по терминологии основателя клонально-селективной тео­рии иммунитета Ф. Бернета).

В процессе развития центральных органов иммунной системы в них изначально формируются клеточные элементы с рецепторами к любому антигену, который, поступая в организм, активирует специфичный к нему клон лимфоцитов. Например, до инфекции частота специфических клеток (Т- и В-лимфоцитов) крайне низкая для протективного ответа и составля­ет примерно 1:10 000-1:100 000 клеток. Однако в течение 1-2 нед после распознавания антигена клетки интенсивно пролиферируют, и их число возрастает примерно в 1000 раз. После созревания они образуют клоны, клетки которых защищают хозяина, вырабатывая антитела, активируя макрофаги, убивая инфицированные клетки и выполняя другие функции. После завершения иммунного ответа антигенспецифические Т- и В-клетки сохраняются как «клетки памяти».

Таким образом,

Молекулы и рецепторы системы адаптивного иммунитета закладыва­ются на ранних этапах онтогенеза из небольшого набора зародышевых генов;

Эта система имеет огромное число антигенраспознающих вариантов (репертуар), достаточное для узнавания своих и чужеродных анти­генов в течение жизни. Иными словами, она формируется в течение жизни индивида под действием различных антигенов;

Основная особенность приобретенного или адаптированного иммуни­тета заключается в том, что соматически перегруппировавшиеся гены иммуноглобулинов и ТСК не наследуются. Потомство получает от родителей набор только зародышевых генов и затем формирует свой спектр элементов приобретенного иммунитета. Эмбрион, получивший зародышевые гены, начинает «строить» свою иммунную систему.

Естественно, что в организме млекопитающих врожденный и адаптив­ный иммунитет, осуществляющие разные задачи, функционируют коор­динированно. Активация врожденного иммунитета, как правило, служит обязательным условием инициации адаптивного иммунного ответа.

В историческом аспекте клиническая иммунология имеет дело с заболе­ваниями, вызванными нарушениями приобретенного иммунитета (иммуно­дефициты, аутоиммунная патология, аллергопатология, лимфопролифера­тивные заболевания и др.). Однако в последнее время активно выявляются и изучаются заболевания с преимущественными дефектами компонентов врожденного иммунитета, включая патологию рецепторов врожденного иммунитета, комплемента, цитокинов и их рецепторов, системы нормаль­ных киллеров и многие другие. Чаще всего такие заболевания проявляются в форме воспаления различного уровня - от системного до локального. Тем не менее в настоящее время целесообразно оба типа иммунного реа­гирования рассматривать в комплексе, делая акценты на наиболее важных сторонах каждого из них. В связи с этим по мере изложения материала мы приводим не только индивидуальные особенности врожденного и приобре­тенного иммунитета, но и общие закономерности их функционирования.

В табл. 1-1 приведены основные компоненты и свойства систем врожден­ного и адаптивного иммунитета.

Таблица 1-1. Компоненты и функции врожденного и приобретенного иммунитета
Компоненты и функции Врожденный иммунитет Приобретенный иммунитет
Клетки-зффекторы Моноциты/макрофаги, ден­дритные клетки, гранулоциты, ГЖ-клетки, [\1КТ-лимфоциты, эози- нофилы, тучные клетки Т- и В-лимфоцит&, их многочис­ленные субпопуляции (Т-хелперы, Т-регуляторы, Т-киллеры и др.)
Гуморальные факторы Комплемент, естественные антите­ла, катионные противомикробные пептиды, провоспалительные цитокины, интерфероны типа 1, белки острой фазы, белки тепло­вого шока, лектины и др. Антитела различных изотипов и подтипов: 1дМ. 1д6 (^6, 1д62,1д63, 1д6Д 1дА (1дАг 1дА2), 1дЕ, 1дй; цито­кины (ИЛ-2, ИЛ-4, ИФН-у и др.)
Основные функции Распознавание патогенов, прямое противомикробное действие, под­держание микробиоценоза, разви­тие воспаления, индукция приоб­ретенного иммунитета и др. Двойное распознавание антигена в комплексе с молекулами главного комплекса гистосовместимости (для Т-лимфоцитов), развитие иммунно­го ответа клеточного или гумораль­ного типа, иммунная память и др.

Компоненты врожденного и приобретенного иммунитета тесно связаны по многим параметрам:

* дендритные клетки (ДК), макрофаги и другие клетки врожденного иммунитета презентируют антиген Т- и В-лимфоцитам;



Понравилась статья? Поделитесь ей