Контакты

Иммунологическая память. Иммунологическая память и толерантность Иммунная память

Периоды образования специфических антител в ответ на введение вакцины (рис. 4):

Рис. 4 . Динамика образования антител при первичном (А-прайминг)
и вторичном (Б-бустерная иммунизация) введении антигена.
Периоды образования специфических антител (А. А. Воробьев и др., 2003):

а - латентный; б - логарифмического роста; в - стационарный; г - снижения

· латентный («лаг»-фаза) - макрофаги перерабатывают антиген, представляют его Т-лимфоцитам, Тh активируют В-лимфоциты, последние превращаются в плазматические антителообразующие клетки, параллельно образуются В-лимфоциты памяти. От введения вакцины до появления антител в сыворотке крови проходит от нескольких суток до 2 недель (время зависит от вида вакцины, способа введения и особенностей
иммунной системы);

· роста («лог»-фаза) - экспоненциальное увеличение количества антител в сыворотке крови продолжительностью от 4 дней до 4 недель;

· стационарный - количество антител поддерживается на постоянном уровне;

· снижения - после достижения максимального титра антител происходит его снижение, причем сначала относительно быстро, а затем медленно. Длительность фазы снижения зависит от соотношения скорости синтеза антител и их полураспада. Когда снижение уровня протективных антител достигает критического, защита падает, и становится возможным заболевание при контакте с источником инфекции. Поэтому для поддержания напряженного иммунитета часто необходимо вводить бустерные дозы вакцины.

Различают первичный и вторичный иммунный ответ организма. Первичный иммунный ответ наблюдается при первичном введении антигена. Вторичный иммунный ответ развивается после повторных контактов системы иммунитета с антигенами.

При первичном иммунном ответе на антиген в основном продуцируются IgM, при вторичном - плазматические клетки переключаются с продукции IgM на более зрелые изотипы и продуцируют антитела классов IgG, IgA или IgE с более высоким сродством к антигену. IgG наиболее полно проходят фазы созревания аффинитета. Они нейтрализуют экзотоксины, активируют комплемент и обладают высоким сродством к Fc-рецепторам всех типов. Нейтрализация и удаление свободных патогенов осуществляется путем их опсонизации и последующего фагоцитоза. IgG являются также важным фактором борьбы с внутриклеточными патогенами. Опсонизируя клетки, IgG делают их доступными для антителозависимого клеточного цитолиза.

Иммунологическая память - способность иммунной системы отвечать на повторный контакт с антигеном быстрее, сильнее и длительнее по сравнению с первичным ответом. Иммунологическая память обеспечивается клетками памяти - длительно живущими субпопуляциями антигенспецифических T- и B-клеток, быстрее реагирующими на повторное введение антигена. Они находятся на стадии G 1 клеточного цикла, т. е. вышли из стадии покоя G 0 и готовы к быстрому превращению в эффекторные клетки при очередном контакте с антигеном.

Иммунологическая память, особенно память Т-лимфоцитов, очень стойкая, благодаря чему удается искусственно формировать длительный противоинфекционный иммунитет. Преобладающее направление развития вторичного иммунного ответа закодировано в субпопуляционной принадлежности Т-клеток памяти и последующей их дифференцировке
в Th1 или Th2.

Вторичный иммунный ответ характеризуется следующими
признаками:

1. Более раннее развитие иммунных реакций по сравнению с первичным ответом.

2. Уменьшение дозы антигена, необходимой для достижения оптимального ответа.

3. Увеличение напряженности и длительности иммунного ответа.

4. Усиление гуморального иммунитета: увеличение количества
антителообразующих клеток и циркулирующих антител, активация Тh2
и усиление выработки ими цитокинов (ИЛ 3, 4, 5, 6, 9, 10, 13), сокращение периода образования IgM, преобладание IgG и IgA.

5. Повышение специфичности гуморального иммунитета в результате феномена «созревания аффинности».

6. Усиление клеточного иммунитета: увеличение числа антигенспецифических Т-лимфоцитов, активация Тh1 и усиление выработки ими цитокинов (γ-интерферона, ФНО, ИЛ2), повышение аффинности антигенспецифических рецепторов Т-лимфоцитов.

Эффективность вторичного иммунного ответа прежде всего зависит от полноценности (достаточной интенсивности) первичного антигенного стимула, длительности интервала между первичным и вторичным введением антигена.

Так как в процессе иммунного ответа основное значение имеют антитела, то в его развитии главная роль принадлежит В-системе лимфоцитов. Определенное значение имеет клеточный иммунитет, в развитии которого основная роль принадлежит Т-системе лимфоцитов.

Иммунологическая память - это способность иммунной системы отвечать более быстро и эффективно на антиген (патоген), с которым у организма был предварительный контакт.

Такая память обеспечивается предсуществующими антигенспецифическими клонами как В-клеток, так и Т-клеток, которые функционально более активны в результате прошедшей первичной адаптации к определённому антигену.

Такая память обеспечивается предсуществующими антигенспецифическими клонами как В-клеток, так и Т-клеток, которые функционально более активны в результате прошедшей первичной адаптации к определенному антигену.

В результате первой встречи запрограммированного лимфоцита с определенным антигеном образуются две категории клеток: эффекторные, которые немедленно выполняют специфическую функцию - секретируют антитела или реализуют клеточные имунные реакции, и клетки памяти, которые циркулируют длительное время. При повторном поступлении данного антигена они быстро превращаются в лимфоциты-эффекторы, которые вступают в реакцию с антигеном. При каждом делении запрограммированного лимфоцита после его встречи с антигеном количество клеток памяти увеличивается.

Клеткам памяти требуется меньше времени для того, чтобы активироваться при повторной встрече с антигеном, что соответственно укорачивает интервал, необходимый для возникновения вторичного ответа.

B-клетки иммунологической памяти качественно отличаются от непремированных B-лимфоцитов не только тем, что начинают продуцировать IgG -антитела раньше, но они обычно обладают и более высокоаффинными антигенными рецепторами благодаря селекции в ходе первичного ответа.

T-клетки памяти вряд ли обладают рецепторами повышенной аффинности по сравнению с непримированными T-клетками. Однако T-клетки иммунологической памяти способны реагировать на более низкие дозы антигена, и это позволяет предполагать, что их рецепторный комплекс в целом (включая молекулы адгезии) функционирует более эффективно.

Вакцины живые, убитые, химические, анатоксины, синтетические вакцины. Современные рекомбинантные вакцины. Принципы поучения каждого вида вакцин, механизмы создаваемого иммунитета. Адъюванты в вакцинах.

Живые вакцины содержат жизнеспособные штаммы патогенных микробов, ослабленные до степени, исключающей возникновение заболевания, но полностью сохранившие антигенные и иммуногенные свойства. Это аттенуированные в естественных или искусственных условиях штаммы микроорганизмов. Аттенуированные штаммы вирусов и бактерий получают путем инактивации генов, ответственных за образование факторов вирулентности, или за счет мутаций в генах, неспецифически снижающих эту вирулентность. Вакцинные штаммы микроорганизмов, сохраняя способность размножаться, вызывают развитие бессимптомной вакцинальной инфекции. Реакцию организма на введение живой вакцины расценивают не как болезнь, а как вакцинальный процесс. Вакцинальный процесс продолжается несколько недель и приводит к формированию иммунитета к патогенным штаммам микроорганизмов.

Живые вакцины имеют ряд преимуществ перед убитыми и химическими вакцинами. Живые вакцины создают прочный и длительный иммунитет, по напряженности приближающийся к постинфекционному. Для создания прочного иммунитета во многих случаях достаточно одного введения вакцины, причем, такие вакцины могут вводиться в организм достаточно простым методом – например, скарификационным или пероральным. Живые вакцины используют для профилактики таких заболеваний, как полиомиелит, корь, паротит, грипп, чума, туберкулез, бруцеллез, сибирская язва.

Для получения аттенуированных штаммов микроорганизмов используют следующие методы.

1. Культивирование высокопатогенных для человека штаммов путем последовательных пассажей через культуры клеток или организм животных, либо путем воздействия во время роста и размножения микробов физическими и химическими факторами. В качестве таких факторов могут быть использованы необычная температура, неблагоприятные для роста питательные среды, ультрафиолетовое облучение, формалин и др. факторы. Подобным образом были получены вакцинные штаммы возбудителя сибирской язвы, туберкулеза.

2). Адаптация к новому хозяину – пассирование возбудителя на невосприимчивых животных. Путем длительного пассирования через мозг кролика вируса уличного бешенства Пастер получил фиксированный вирус бешенства, который был максимально вирулентен для кролика и минимально вирулентен для человека, собак, сельскохозяйственных животных.

2) Выявление и селекция штаммов микроорганизмов, утративших в естественных условиях вирулентность для человека (вирус осповакцины).

3) Создание вакцинных штаммов микроорганизмов с помощью методов генной инженерии путем рекомбинации геномов вирулентного и невирулентного штаммов.

Недостатки живых вакцин:

Остаточная вирулентность

Высокая реактогенность

Генетическая нестабильность – ревертирование к дикому типу, т.е. восстановление вирулентных свойств

Способность вызывать тяжелые осложнения, в том числе эецефалиты и генерализацию вакцинного процесса.

Убитые вакцины, способы получения, использование для профилактики и терапии инфекционных заболеваний, создаваемый иммунитет, примеры;

Убитые (корпускулярные) вакцины содержат взвесь цельных микробных клеток, инактивированных физическими и химическими методами. Микробная клетка сохраняет антигенные свойства, но лишаются жизнеспособности. Для инактивации используют нагревание, ультрафиолетовое облучение, формалин, фенол, спирт, ацетон, мертиолят и др. Убитые вакцины обладают более низкой эффективностью по сравнению с живыми вакцинами, но при повторном введении создают достаточно стойкий иммунитет. Вводятся парентерально. Корпускулярные вакцины применяют для профилактики таких заболеваний, как брюшной тиф, холера, коклюш и др.

- химические (субъединичные) вакцины, способы получения, использование, создаваемый иммунитет, примеры;

Химические (субъединичные) вакцины содержат специфические антигены, извлеченные из микробной клетки с помощью химических веществ. Из микробных клеток извлекают протективные антигены, представляющие собой иммунологически активные вещества, способные при введении в организм обеспечивать формирование специфического иммунитета. Протективные антигены находятся либо на поверхности микробных клеток, либо в клеточной стенке, либо на клеточной мембране. По химической структуре они представляют собой либо гликопротеиды, либо белково- полисахаридно-липидные комплексы. Извлечение антигенов из микробных клеток осуществляется различными способами: экстрагированием кислотой , гидроксиламином, осаждением антигенов спиртом, сернокислым аммонием, фракционированием. Полученная таким путем вакцина содержит специфические антигены в высокой концентрации и не содержит балластных и токсических субстанций. Химические вакцины обладают низкой иммуногенностью, поэтому вводятся с адъювантами. Адъюванты - это вещества, которые сами по себе не обладают антигенными свойствами, но при введениии с каким-либо антигеном усиливают иммунный ответ на данный антиген. Такие вакцины используются для профилактики менингококковой инфекции, холеры и др.

Расщепленные (сплит) вакцины, их характеристика, применений для профилактики инфекционных заболеваний, примеры;

Расщепленные вакцины готовятся обычно из вирусов и содержат отдельные антигены вирусной

частицы. Они, также, как и химические, обладают низкой иммуногенностью, поэтому вводятся с

адьювантом. Примером подобной вакцины является вакцина против гриппа.

- искусственные вакцины, их разновидности, характеристика, применение, примеры;

- рекомбинантные вакцины, получение, применение, примеры.

Рекомбинантные вакцины - это вакцины, разработанные на основе генно-инженерных методов. Принцип создания генно-инженерных вакцин включает выделение природных генов антигенов или их активных фрагментов, встройку этих генов в геном простых биологических объектов (бактерии, например, кишечная палочка, дрожжи, крупные вирусы). Необходимые для приготовления вакцины антигены получают при культивировании биологического объекта, который является продуцентом антигена. Подобная вакцина используется для профилактики гепатита В.

Препараты, содержащие антитела (гипериммунная плазма, антитоксические, антимикробные сыворотки, гамма-глобулины и иммуноглобулины), их характеристика, получение, титрование. Серотерапия и серопрофилактика.

Б) препараты, содержащие антитела:

Классификация препаратов, содержащих антитела

· Лечебные сыворотки.

· Иммуноглобулины.

· Гамма-глобулины.

· Препараты плазмы.

Различают два источника получения специфических сывороточных препаратов:

1) гипериммунизация животных (гетерологичные сывороточные препараты);

2) вакцинация доноров (гомологичные препараты).

Сыворотки антимикробные и антитоксические, гомологичные и гетерологичные, получение, титрование, очистка от балластных белков, применение, создаваемый иммунитет, примеры;

Антимикробные сыворотки содержат антитела против клеточных антигенов возбудителя. Их получают иммунизацией животных клетками соответствующих возбудителей и дозируют в миллилитрах. Антимикробные сыворотки могут применяться при лечении:

Сибирской язвы;

Стрептококковых инфекций;

Стафилококковой инфекции;

Синегнойной инфекции.

Их назначение определяется тяжестью течения заболевания и, в отличие от антитоксических, не является обязательным. При лечении больных с хроническими, длительно, вяло текущими формами инфекционных заболеваний возникает необходимость стимулировать собственные механизмы специфической зашиты путем введения различных антигенных препаратов и создания активного приобретенного искусственного иммунитета {иммунотерапия антигенными препаратами). Для этих целей используются в основном лечебные вакцины и значительно реже - аутовакцины или стафилококковый анатоксин.

Антитоксические сыворотки содержат антитела против экзотоксинов. Их получают путем гипериммунизации животных (лошадей) анатоксином.

Активность таких сывороток измеряется в АЕ (антитоксических единицах) или ME (международных единицах) - это минимальное количество сыворотки, способное нейтрализовать определенное количество (обычно 100 DLM) токсина для животных определенного вида и определенной массы. В настоящее время в России

антитоксические сыворотки:

Противодифтерийная;

Противостолбнячная;

широко используются следующие

Противогангренозная;

Противоботулиническая.

Применение антитоксических сывороток при лечении соответствующих инфекций обязательно.

Гомологичные сывороточные препараты получают из крови доноров, специально иммунизированных против определенного возбудителя или его токсинов. При введении таких препаратов в организм человека антитела циркулируют в организме несколько дольше, обеспечивая пассивный иммунитет или лечебный эффект в течение 4-5 недель. В настоящее время применяют донорские иммуноглобулины нормальные и специфические и донорскую плазму. Выделение иммунологически активных фракций из донорских сывороток производят с использованием спиртового метода осаждения. Гомологичные иммуноглобулины практически ареактогенны, поэтому реакции анафилактического типа при повторных введениях гомологичных сывороточных препаратов возникают редко.

Для изготовления гетерологичных сывороточных препаратов используют в основном крупных животных лошадей. Лошади обладают высокой иммунологической реактивностью, от них в сравнительно короткий срок можно получить сыворотку, содержащую антитела в высоком титре. Кроме этого, введение лошадиного белка человеку дает наименьшее количество побочных реакций. Животные других видов используются редко. Годные к эксплуатации в возрасте от 3 лет и выше животные подвергаются гипериммунизации, т.е. процессу многократного введения возрастающих доз антигена с целью накопления в крови животных максимального количества антител и поддержания его на достаточном уровне в течение возможно более длительного времени. В период максимального нарастания титра специфических антител в крови животных осуществляют 2-3 кровопускания с интервалом в 2дня. Кровь берут из расчета 1 литр на 50 кг веса лошади из яремной вены в стерильную бутыль, содержащую антикоагулянт. Полученная от лошадей-продуцентов кровь передается в лабораторию для дальнейшей обработки. Плазма отделяется на сепараторах от форменных элементов и дефибринируется раствором хлористого кальция. Использование цельной гетерологичной сыворотки сопровождается аллергическими реакциями в форме сывороточной болезни и анафилаксии. Одним из путей уменьшения побочных реакций сывороточных препаратов, а также повышения их эффективности является их очистка и концентрация. Сыворотку очищают от альбуминов и некоторых глобулинов, которые не относятся к иммунологически активным фракциям сывороточных белков. Иммунологически активными являются псевдоглобулины с электрофоретической подвижностью между гамма- и бета-глобулинами, к этой фракции относятся антитоксические антитела. Также к иммунологически активным фракциям относятся гамма-

глобулины, в эту фракцию входят антибактериальные и антивирусные антитела. Очистка сывороток от балластных белков проводится по методу «Диаферм-3». При использовании этого метода сыворотка очищается путем осаждения под влиянием сернокислого аммония и путем пептического переваривания. Помимо метода «Диаферм 3»,разработаны и другие (Ультраферм, Спиртоферм, иммуносорбцииидр.), имеющие ограниченное применение

Содержание антитоксина в антитоксических сыворотках выражается в международных единицах (ME), принятых ВОЗ. Например, 1 ME противостолбнячной сыворотки соответствует ее минимальному количеству, нейтрализующему 1000 минимальных смертельных доз (DLm) столбнячного токсина для морской свинки массой 350 г. 1 ME противоботулинического антитоксина - наименьшее количество сыворотки, нейтрализующее 10000 DLm ботулинического токсина для мышей массой 20 г. 1 ME противодифтерийной сыворотки соответствует ее минимальному количеству, нейтрализующему 100 DLm дифтерийного токсина для морской свинки массой 250 г.

В препаратах иммуноглобулинов IgG является основным компонентом (до 97%). lgA, IgM, IgD входят в препарат в очень малых количествах. Выпускаются также препараты иммуноглобулинов (IgG), обогащенные IgM и IgA. Активность препарата иммуноглобулина выражается в титре специфических антител, определяемых одной из серологических реакций и указывается в наставлении по применению препарата.

Гетерологичные сывороточные препараты применяют для лечения и профилактики инфекционных заболеваний, вызываемых бактериями, их токсинами, вирусами. Своевременное раннее применение сыворотки может не дать развиться болезни, удлиняется срок инкубации, появившееся заболевание имеет более мягкое течение, снижается смертность.

Существенным недостатком использования гетерологичных сывороточных препаратов является возникновение сенсибилизации организма к чужеродному белку. Как указывают исследователи, к глобулинам сыворотки лошади в России сенсибилизировано более 10% населения. В связи с этим повторное введение гетерологичных сывороточных препаратов может сопровождаться осложнениями в виде различных аллергических реакций, самой грозной из которых является анафилактический шок.

Для выявления чувствительности пациента к лошадиному белку ставят внутрикожную пробу с разведенной 1:100 лошадиной сывороткой, которую специально изготавливают для этой цели. Перед введением лечебной сыворотки пациенту внутрикожно на сгибательную поверхность предплечья вводят 0,1 мл разведенной лошадиной сыворотки и наблюдают за реакцией в течение 20 минут.

Гамма-глобулины и иммуноглобулины, их характеристика, получение, применение для профилактики и терапии инфекционных заболеваний, примеры;

Иммуноглобулинами (гамма-глобулинами) называют очищенные и концентрированные препараты гамма-глобулиновой фракции сывороточных белков, содержащие высокие титры антител. Освобождение от балластных сывороточных белков способствует снижению токсичности и обеспечивает быстрое реагирование и прочное связывание с антигенами. Применение гамма-глобулинов снижает количество аллергических реакций и осложнений, возникающих при введении гетерологичных сывороток. Современная технология получения человеческого иммуноглобулина гарантирует гибель вируса инфекционного гепатита. Основным иммуноглобулином в препаратах гамма-глобулина является IgG. Сыворотки и гамма-глобулины вводят в организм различными путями: подкожно, внутримышечно, внутривенно. Возможно также введение в спинномозговой канал. Пассивный иммунитет возникает через несколько часов и длится до двух недель.

Иммуноглобулин антистафилококковый человеческий. Препарат содержит иммунологически активную белковую фракцию, выделенную из плазмы крови доноров, иммунизированных стафилококковым анатоксином. Активным началом являются антитела к стафилококковому токсину. Создает пассивный антистафилококковый антитоксический иммунитет. Используется для иммунотерапии стафилококковой инфекции.

- препараты плазмы, получение, использование для терапии инфекционных заболеваний, примеры; Антибактериальная плазма.

1). Антипротейная плазма. Препарат содержит антипротейные антитела и получается от доноров,

иммунизированных протейной вакциной. При введении препарата создается пассивный

антибактериальный иммунитет. Используется для иммунотерапии ГВЗ протейной этиологии.

2). Антисинегнойная плазма. Препарат содержит антитела к синегнойной палочке. Получается от

доноров, иммунизированных синегнойной корпускулярной вакциной. При введении препарата

создается пассивный специфический антибактериальный иммунитет. Используется для

иммунотерапии синегнойной инфекции.

Антитоксическая плазма.

1) Плазма антитоксическая антисинегнойная. Препарат содержит антитела к экзотоксину А

синегнойной палочки. Получают от доноров, иммунизированных синегнойным анатоксином. При

введении препарата создается пассивный антитоксический антисинегнойный иммунитет.

Используется для иммунотерапии синегнойной инфекции.

2) Плазма антистафилококковая гипериммунная. Препарат содержит антитела к токсину

стафилококка. Получают от доноров, иммунизированных стафилококковым анатоксином. При

введениии создает пассивный антистафилококковый антитоксический иммунитет. Используется для

иммунотерапии стафилококковой инфекции.

Серотерапия (от лат. serum -- сыворотка и терапия), метод лечения заболеваний человека и животных (преимущественно инфекционных) при помощи иммунных сывороток. Лечебный эффект основан на явлении пассивного иммунитета -- обезвреживании микробов (токсинов) антителами (антитоксинами), содержащимися в сыворотках, которые получают путём гипериммунизации животных (главным образом лошадей). Для серотерапии применяют также очищенные и концентрированные сыворотки -- гамма-глобулины; гетерогенные (полученные из сывороток иммунизированных животных) и гомологичные (полученные из сывороток иммунизированных или переболевших людей).

Серопрофилактика (лат. serum сыворотка + профилактика; син.: сывороточная профилактика,) - метод предупреждения инфекционных болезней путем введения в организм иммунных сывороток или иммуноглобулинов. Используется при заведомом или предполагаемом заражении человека. Наилучший эффект достигается при максимально раннем использовании гамма-глобулина или сыворотки.

В отличие от вакцинации при серопрофилактике в организм вводятся специфические антитела, и следовательно, организм практически немедленно становится в той или иной степени резистентным к определенной инфекции. В отдельных случаях серопрофилактика не предупреждая заболевания, приводит к снижению его тяжести, частоты осложнений и летальности. Вместе с тем серопрофилактика обеспечивает пассивный иммунитет лишь в пределах 2-3 нед. Введение сыворотки, полученной из крови животных, в отдельных случаях может вызвать сывороточную болезнь и такое грозное осложнение, как анафилактический шок.

Для предупреждения сывороточной болезни во всех случаях сыворотку вводят по методу Безредки поэтапно: в первый раз - 0,1 мл, через 30 мин - 0,2 мл и через 1 ч всю дозу.

Серопрофилактику проводят против столбняка, анаэробных инфекций, дифтерии, кори, бешенства, сибирской язвы, ботулизма, клещевого энцефалита и др. При ряде инфекционных болезней с целью серопрофилактики одновременно с сывороточными препаратами используют и другие средства: антибиотики при чуме, анатоксин при столбняке и др.

Сыворотки иммунные применяют при лечении дифтерии (преимущественно в начальной стадии болезни), ботулизма, при укусах ядовитых змей; гамма-глобулины -- при лечении гриппа, сибирской язвы, столбняка, оспы, клещевого энцефалита, лептоспироза, стафилококковых инфекций (особенно вызванных антибиотикоустойчивыми формами микробов) и других заболеваний.

Для предупреждения осложнений серотерапии (анафилактический шок, сывороточная болезнь) сыворотки и гетерогенные гамма-глобулины вводят по специальной методике с предварительной кожной пробой.

ИММУНОЛОГИЧЕСКАЯ ПАМЯТЬ, способность иммунной системы запоминать первый контакт организма с антигеном и реагировать на его повторное поступление более быстрой и интенсивной реакцией, направленной на его удаление. Субстратом иммунологической памяти являются её В- и Т-лимфоциты, формирующиеся из основных популяций В- и Т-лимфоцитов иммунной системы и отличающиеся от последних антигенраспознающими рецепторами [например, в В-лимфоцитах иммунологической памяти рецепторы представлены преимущественно иммуноглобулинами G (IgG) или А (IgA), а не иммуноглобулинами М или D обычных В-лимфоцитов]; они обладают более высоким сродством к антигену, приобретённому в ходе их развития, а также набором хемокиновых рецепторов и молекул клеточной адгезии. Это определяет различие путей их рециркуляции: если обычные лимфоциты мигрируют из кровотока во вторичные лимфоидные органы (лимфатические узлы, селезёнку, миндалины и другие фолликулярные структуры), то клетки иммунологической памяти - преимущественно в кожу, слизистые оболочки, паренхиматозные органы, особенно в очаги воспаления.

Ускорение и повышение эффективности иммунного ответа при повторном поступлении антигена, индуцировавшего формирование иммунологической памяти, связано с большей численностью клеток в клонах В- и Т-лимфоцитов иммунологической памяти по сравнению с клонами обычных В- и Т-лимфоцитов, «облегчённым» механизмом активации и отсутствием необходимости в прохождении некоторых этапов иммунного ответа. В результате за более короткий срок образуется большее число эффекторных клеток и гуморальных факторов иммунной защиты с более высоким сродством к антигену, что и обеспечивает более высокую результативность иммунного ответа. Продолжительность иммунологической памяти определяется сроком жизни её клеток, которая значительно превышает сроки жизни обычных лимфоцитов и составляет несколько лет. Полагают, что для поддержания жизнеспособности В-лимфоцитов иммунологической памяти требуется присутствие в организме антигена, тогда как численность Т-лимфоцитов иммунологической памяти не зависит от присутствия антигена и поддерживается цитокинами (в частности, интерлейкинами 15 и 7).

Обычно наличие иммунологической памяти эффективно предохраняет организм от развития заболевания при инфицировании или существенно облегчает течение болезни. С формированием иммунологической памяти связана вакцинация против инфекционных заболеваний, при которой введение антигенов возбудителя приводит к образованию клеток иммунологической памяти без развития инфекционного процесса.

Лит. смотри при ст. Иммунитет.


Иммунологическая память

При повторной встрече с антигеном организм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен получил название иммунологической памяти.

Иммунологическая память имеет высокую специфичность к конкретному антигену, распространяется как на гуморальное, так и клеточное звено иммунитета и обусловлена В- и Т-лимфоцитами. Она образуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ей наш организм надежно защищен от повторных антигенных интервенций.

Иммунологическая память распространяется как на гуморальный, так и на клеточный иммунитет, имеет высокую специфичность к конкретному антигену и обусловлена B-лимфоцитами и Т-киллерами. Иммунологическая память формируется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ей организм надежно защищен от повторных антигенных интервенций На сегодняшний день существует две наиболее вероятные теории формирования иммунологической памяти. Одна из них считает, что иммунологическая память обусловлена длительно сохраняющимся в организме антигеном, и этому имеется множество примеров. Так, инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие длительное время (иногда всю жизнь) сохраняются в организме и таким образом могут оказывать антигенное воздействие на иммунную систему. По другой теории, на наш взгляд более приемлемой, в процессе развития первичной иммунной реакции в организме часть лимфоцитов размножается без дифференцировки и превращается в малые покоящиеся клетки (В - и Г-клетки иммунологической памяти).

Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более), что обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу. Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2-3-кратными иммунизациями при первичной вакцинации и периодическими повторными прививками - ревакцинациями. Однако феномен иммунологической памяти имеет и отрицательные стороны. Так, пересадка иммунологически несовместимых органов и тканей завершается отторжением трансплантата и формированием посттрансппантоционного иммунитета. Повторная попытка пересадить те же ткани вызывает быструю и бурную реакцию - криз отторжения.

На сегодняшний день рассматривают два наиболее вероятных механизма формирования иммунологической памяти. Один из них предполагает длительное сохранение антигена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, поддерживая в напряжении иммунную систему. Вероятно также наличие долгоживущих дендритных АПК, способных длительно сохранять и презентировать антиген.

Поверженные бактерии и вирусы остаются в памяти иммунитета. Фото: Nathan Reading

Другой механизм предусматривает, что в процессе развития в организме продуктивного иммунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые покоящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой специфичностью к конкретной антигенной детерминанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего происхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и поддержания его длительное время на защитном уровне. Осуществляют это 2-3-кратными прививками при первичной вакцинации и периодическими повторными введениями вакцинного препарата - ревакцинациями.

Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быструю и бурную реакцию - криз отторжения.

Иммунологическая толерантность

Это явление, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.

В отличие от иммуносупрессии иммунологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

Иммунологическую толерантность вызывают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

Иммунологическая толерантность бывает врожденной и приобретенной. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассивной. Активная толерантность создается путем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать веществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).

Иммунологическая толерантность отличается специфичностью - она направлена к строго определенным антигенам. По степени распространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в состав конкретного антигена. Для расщепленной, или моновалентной, толерантности характерна избирательная невосприимчивость каких-то отдельных антигенных детерминант.

Степень проявления иммунологической толерантности существенно зависит от ряда свойств макроорганизма и толерогена.

Важное значение в индукции иммунологической толерантности имеют доза антигена и продолжительность его воздействия. Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств высококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством высокогомогенного молекулярного антигена.

Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития иммунологической толерантности:

1. Элиминация из организма антигенспецифических клонов лимфоцитов.

2. Блокада биологической активности иммунокомпетентных клеток.

3. Быстрая нейтрализация антигена антителами.

Феномен иммунологической толерантности имеет большое практическое значение. Он используется для решения многих важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, лечение аллергий и других патологических состояний, связанных с агрессивным поведением иммунной системы.



Иммунологическая память - способность иммунной системы организма после первого взаимодействия с антигеном специфически отвечать на его повторное введение. Механизм, лежащий в основе иммунологической памяти, окончательно не установлен. Наряду со специфичностью, иммунологическая память -- важнейшее свойство иммунного ответа.

Позитивная иммунологическая память проявляется как ускоренный и усиленный специфический ответ на повторное введение антигена. При первичном гуморальном иммунном ответе после введения антигена проходит несколько дней (латентный период) до появления в крови антител. Затем наблюдается постепенное увеличение кол-ва антител до максимума с последующим снижением. При вторичном ответе на ту же дозу антигена латентный период сокращается, кривая увеличения антител становится круче и выше, а её снижение происходит медленнее. После стимуляции антигеном происходит пролиферация лимфоцитов (расширение клона), что приводит к образованию большого количества клеток исполнительного звена, а также других малых лимфоцитов, которые повторно входят в митотический цикл и служат для пополнения группы клеток, несущих соответствующий рецептор. Предполагается, что так как эти клетки результат вызванной антигеном пролиферации, то они способны к усиленному ответу при повторной встрече с антигеном (то есть, они действуют как клетки памяти). B семействе В-клеток эти клетки могут также подвергнуться переключению синтеза с IgM на IgG, что объясняет немедленное производство этими клетками IgG во время вторичного иммунного ответа.

Позитивная иммунологическая память к антигенным компонентам окружающей среды лежит в основе аллергических заболеваний, а к резус-антигену (возникает при резус-несовместимой беременности)-- в основе гемолитических болезни новорождённых.

Негативная иммунологическая память -- это естественная и приобретённая иммунологическая толерантность, проявляющаяся ослабленным ответом или его полным отсутствием как на первое, так и на повторное введение антигена. Нарушение негативной иммунологической памяти к собственным антигенам организма является патогенетическим механизмом некоторых аутоиммунных заболеваний.

Иммунологическая память представляет собой разновидность биологической памяти, принципиально отличающуюся от нейрологической (мозговой) памяти по способу её введения, уровню хранения и объёму информации. Иммунологическая память при ответе на разные антигены различна. Она может быть краткосрочной (дни, недели), долговременной (месяцы, годы) и пожизненной. Основные носители иммунологической памяти -- долгоживущие Т- и В-лимфоциты. Из других механизмов иммунологической памяти (кроме клеток памяти) определенное значение имеют иммунные комплексы, цитофильные антитела, а также блокирующие и антиидиотипичные антитела. Иммунологическая память можно перенести от иммунного донора неиммунному реципиенту, переливая живые лимфоциты или вводя лимфоцитарный экстракт, содержащий «фактор переноса» или иммунную РНК. Информационная ёмкость -- до 106--107 бит на организм. У позвоночных включается более 100 бит в сутки. В филогенезе иммунологическая память возникла одновременно с нейрологической памятью. Полной ёмкости иммунологическая память достигает у взрослых животных со зрелой иммунной системой (у новорождённых и старых особей она ослаблена).



Понравилась статья? Поделитесь ей