Контакты

МРТ: принцип и возможности метода, области применения, показания и противопоказания. Магнитно-резонансная терапия: отзывы, противопоказания. Что лечит магнитно-резонансная терапия? Слабые стороны МРТ

Буквально три-четыре столетия назад докторам приходилось ставить диагноз, не имея ничего точнее рентгенологического исследования. Даже тогда было диковинкой, о которой мало кто что-либо слышал. Сейчас столько точных исследований, которые помогают дать четкое представление о той или иной патологии, ее размерах, форме и опасности. Среди таких диагностических процедур . В чем же ее принцип?

За принцип этой диагностической процедуры взят феномен ЯМР (), при помощи которого можно получить послойное изображение органов и тканей организма.

Ядерно-магнитный резонанс – это физическое явление, которое заключается в особенных свойствах ядер атомов. При помощи импульса радиочастотной природы в электромагнитном поле в виде особого сигнала излучается энергия. Компьютер отображает и запечатлевает эту энергию.

ЯМР дает возможность все знать об организме человека из-за насыщенности последнего атомами водорода и магнитных свойств тканей организма. Установить, где находится тот или иной атом водорода, можно благодаря векторному направлению протонных параметров, которые делятся на две расположенные по разные стороны фазы, а также их зависимости от магнитного момента.

Принцип работы МРТ

При помещении ядра атома во внешнее магнитное поле, момент магнитной природы направится в противоположную сторону от магнитного момента поля. Когда на определенный участок организма воздействует с той или иной частотой, некоторые протоны изменяют свое направление, но затем все снова возвращается на круги своя. На этом этапе при помощи специальной системы в компьютере производится сбор данных, полученных с томографа, регистрируются несколько «расслабленных» ядер атома.

Что такое магнитно-резонансная томография?

МРТ — на сегодняшний день единственный метод лучевой диагностики, который может дать наиболее точные данные о состоянии организма человека, метаболизме, строении и физиологических процессах в тканях и органах.

Во время исследования создаются снимки отдельных участков организма. Органы и ткани отображаются в разных проекциях, что дает возможность увидеть их в разрезе. После врачебной оценки таких снимков можно сделать достаточно точные выводы об их состоянии.

Принято считать, что МРТ была основана в 1973 году. Но первые томографы существенно отличались от современных. Качество их изображения было низким, хотя они и были , чем томографы сегодняшнего дня. Прежде чем появились томографы, имеющие вид современных и работающие также качественно и точно, над их усовершенствованием трудились величайшие умы мира.

Современный магнитно-резонансный томограф – это высотехнологичное устройство, работающее благодаря взаимодействию магнитного поля и радиоволн. Прибор выглядит как тоннельная труба с выдвижным столом, на котором и размещают пациента. Работа этого стола устроена так, что может перемещаться в зависимости от томографического магнита.

Пример современного аппарата МРТ

Обследуемый участок окружают радиочастотные датчики, считывающие сигналы и передающие их на компьютер. Полученные данные обрабатываются на компьютере, вследствие чего и получается точное изображение. Эти снимки записывают на пленку либо на диск.

В результате получается не снимок , а точное изображение необходимого участка в нескольких плоскостях. Можно посмотреть мягкие ткани в различных разрезах, при этом костная ткань не отображается, а значит – и мешать не будет.

При помощи этой методики можно визуализировать сосудистое русло, органы, различные ткани тела, нервные волокна, связочный аппарата и мышцы. Можно оценить , измерить температуру любого органа.

МРТ бывает или без него. Контраст делает аппаратуру более чувствительной.

Сам совершенно безболезненен. в свой организм никак не ощущается. Зато ощущается множество различных специфических для данной процедуры звуков: различных сигналов, постукиваний, разных шумов. В некоторых клиниках выдают специальные беруши, чтобы пациента не раздражали эти звуки.

Нужно учесть один немаловажный нюанс. Во время процедуры пациента , который представляет собой тоннелеобразный магнит. Есть люди, которые боятся закрытых пространств. Страх этот может быть различной интенсивности – от небольшого беспокойства до паники. В некоторых лечебных учреждениях есть для таких категорий пациентов. Если же такого томографа нет, то нужно рассказать о своих проблемах доктору, он назначит успокоительное перед исследованием.

Для каких исследований больше всего подходит?

Без магнитно-резонансной томографии не обойтись при диагностике таких состояний:

  • многие недуги воспалительного характера, например, ;
  • нарушения головного и спинного мозга ( , );
  • опухоли, как доброкачественные, так и злокачественные. Этот единственный метод, который предоставляет самые точные данные о метастазах, позволяет видеть даже самые мелкие, которые при других исследованиях незаметны. Помогает выяснить, уменьшаются ли они после проведенной терапии или, наоборот, увеличиваются;
  • (сосудистые нарушения, пороки сердца);
  • травмы органов и ;
  • для определения эффективности проведенного оперативного лечения, химиотерапии и лучей;
  • инфекционные процессы в суставах и костях.

Преимущества и недостатки МРТ

У каждой методики есть свои положительные стороны и свои минусы. Среди плюсов этого исследования отмечают:

  • методика не вызывает боли или каких-нибудь неприятных ощущений, кроме звуков, которые издает аппарат при работе;
  • нет никакого вредного радиоактивного излучения, которое присутствует, к примеру, при рентгенологических методах;
  • после процедуры получаются изображения высокого качества, контрастные вещества не причиняют таких побочных эффектов, как при рентгеновском исследовании;
  • не нужна никакая ;
  • исследование является самым информативным и точным среди других, известных ныне.

Исследование дает возможность получить точные и достоверные данные о строении, размерах, форме тканей и органов. Иногда МРТ является единственной возможностью выявить серьезный недуг в начальной стадии, к сожалению, эффективность процедуры недостаточно высока при диагностике костной ткани и нарушениях функции суставов. Но светила медицины смогли и здесь найти выход: если (компьютерной томографии), можно получить вполне достоверные и информативные данные.

Как у каждой методики, у МРТ есть свои противопоказания. Они могут быть относительными и абсолютными. К абсолютным противопоказаниям относят:

  • если у пациента есть вживленный кардиостимулятор;
  • электромагнитные имплантанты в среднем ухе;
  • различные имплантанты металлического или ферромагнитного происхождения.

К относительным противопоказаниям относят:

  • заболевания сердца, печени и почек в стадии декомпенсации;
  • почечная недостаточность;
  • клаустрофобия, беспокойство в ;
  • в первом триместре.

Насколько эффективно пройдет та или иная процедура зависит от многих обстоятельств. Не стоит при малейших подозрениях на наличие той или иной патологии незамедлительно бежать на МРТ. Не смотря на всю точность этого метода, могут быть некоторые нюансы, которые способен выявить только специалист. Например, проводить исследование с контрастом или без него, или делать МРТ параллельно с КТ, или другим исследованием, лабораторными анализами.

Интернет, безусловно, очень полезная и нужная вещь, как, впрочем, и советы знакомых. Но все это не может заменить объективного врачебного исследования и опроса. Только специалист может правильно подойти к вопросу . Поэтому перед тем как идти на эту процедуру нужно зайти к своему терапевту и взять направление, где будет указан предположительный диагноз и какой именно орган или участок нужно исследовать.

После исследования, с полученными данными также лучше пойти к специалисту. Возможно, он решит назначить еще какие-то дополнительные исследования, чтобы прояснить ситуацию и назначить, если нужно, лечение.

Принцип действия МРТ основан на анализе излучения или поглощения электромагнитной энергии веществом. Магнитно-резонансный томограф излучает электромагнитные волны, которые создают магнитное поле. На него реагируют атомы водорода, а томограф фиксирует реакцию и интерпретирует ее в результат: изображение органа в нескольких срезах толщиной до 5 миллиметров.

Для чего проводят МРТ

Томограмму используют для диагностики различных заболеваний — от инфаркта до грыжи, переломов, кровоизлияний и других болезней, и патологий. МРТ назначают, когда другие, более дешевые методы диагностики малоинформативные.

Также магнитно-резонансную томографию используют для:

  • оценки степени тяжести травм позвоночника, сухожилий, всего опорно-двигательного аппарата;
  • правильной подготовки к хирургическому вмешательству;
  • контроля эффективности хирургического лечения различных заболеваний.
Магнитно-резонансная томография позволяет выявить заболевания на ранней стадии, когда лечение более эффективно и требует меньших расходов и усилий. Рекомендуется в качестве профилактики онкологических заболеваний, для выявления злокачественных и доброкачественных новообразований на раннем сроке.

Преимущества МРТ

  • Отсутствие лучевой нагрузки. Магнитное поле безвредно для организма и не влечет побочных эффектов. В отличие от рентгенографии, МРТ можно проходить любое количество раз за небольшой промежуток времени — чтобы контролировать динамику заболевания или эффективность лечения.
  • Безболезненность. Во время исследования пациент не испытывает боли или неприятных ощущений.
  • Высокая эффективность. Точность исследования достигает 97%. МРТ — один из самых эффективных методов диагностики.
  • Приемлемая стоимость. Исследование одной области или одного органа стоит недорого — от 2 700 рублей.

Показания к МРТ

Исследование нужно сделать при подозрении на заболевания, при которых другие методы диагностики не дают точного результата. В зависимости от типа МРТ, показаниями могут служить головные боли, травмы головы и шеи, рассеянный склероз, подозрения на новообразования, уплотнения под кожей и многие другие симптомы.
Магнитно-резонансную томографию используют и в составе комплексного обследования, для своевременного выявления бессимптомных заболеваний. Если хотите точно оценить состояние своего здоровья, посетите открытое МРТ в Москве — найдите адреса недорогих центров на карте.

Противопоказания к МРТ

Небольшое количество противопоказаний — одно из преимуществ магнитно-резонансной томографии. Благодаря безопасности исследования, его можно проводить даже детям. Тем не менее, есть ряд факторов, при наличии которых стоит воздержаться от исследования или проконсультироваться с врачом.
  • Первый триместр беременности
  • Острые травмы
  • Клаустрофобия
  • Болезни, которые мешают сохранять неподвижность длительное время
  • Наличие в организме электронных имплантов, кардиостимуляторов, водителей сердечного ритма, инфузионных насосов, инсулиновых помп
  • Некоторые виды зубных протезов, штифтов, коронок
  • Металлические осколки в теле
  • Клипсы на аневризмах головного мозга.

Противопоказания к МРТ с введением контрастного вещества:

  • Цирроз печени
  • Бронхиальная астма в тяжелой форме
  • Почечная недостаточность
  • Аллергия на контрастное вещество
  • Сахарный диабет и тиреотоксикоз в тяжелой форме
Прежде чем записываться на обследование при помощи магнитно-резонансной томографии, проконсультируйтесь со специалистом.

Как подготовиться к МРТ

Специальной подготовки требует только МРТ органов пищеварения — за несколько часов до диагностики нужно воздержаться от приема пищи. Во всех остальных случаях подготовка не требуется. Прежде чем пройти в кабинет, снимите с себя металлические украшения и одежду с включениями металла. Также выложите из карманов банковские и другие магнитные карты, мобильные телефоны и другие электронные приборы — магнитное поле может вывести их из строя.

Записаться на МРТ в Москве

Ищите лучшие МРТ-центры в Москве в каталоге Zoon — мы собрали для вас информацию о более, чем 400 медицинских центрах, и отметили центры МРТ на карте. Также мы создали рейтинг на основе отзывов, цен на услуги и ряда других параметров.
Выбирайте клинику и проходите качественное обследование. Мы указали адреса открытых томографов в Москве, актуальные цены, контактные данные медицинских центров. Оставляйте свои отзывы о клиниках или читайте отзывы других пользователей, чтобы сделать правильный выбор.

Современная медицинская диагностика базируется на двух видах исследований: прикладных (биологических, химических и т.п.) и визуализационных. Если первый вид исследований появился с незапамятных времен, когда человек определял наличие болезни, как говорится, «по запаху и на язык», то визуализация внутренних органов без повреждения организма стала возможной только с открытием свойства радиоактивных материалов производить проникающее излучение, известное сейчас как «рентгеновское».

Открытия физиков в мире элементарных частиц подарили медицине еще один способ получения изображений всех тканей и органов человеческого тела без прямого внедрения. Магнитно-резонансная томография (МРТ) является одним из самых передовых и продолжающих развиваться видов получения информации о состоянии живых организмов.

В диагностике заболеваний позвоночника МРТ является ведущим типом визуализации, т.к. конструкция позвоночного столба включает множество элементов из мягких тканей (межпозвоночные диски, связки, сумки фасеточных суставов), для которых магнитно-резонансная томография является наилучшим способом «неразрушающего контроля».

Что такое МРТ?

В основе визуализационного метода исследований, названного «Магнитно-резонансная томография», лежит одно из открытий квантовой физики и физики элементарных частиц, что ядра определенных элементов способны излучать излишки энергии, поглощенной под воздействием ориентированных магнитных полей и радиочастотных излучений.

Явление «ядерного магнитного резонанса», на котором базируется магнитно-резонансное исследование предметов (живых и неодушевленных), было открыто в 1922 году в ходе эксперимента по определению «спиновой квантизации» в электронах. Именно тогда ученые-физики поняли, что понятие квантовой физики «спин» (момент импульса частицы) имеет физическое выражение.

В ходе исследований по воздействию радиочастотных (РЧ) излучений на частицы, находящиеся в сильном магнитном поле, в 1937 году было выявлено, что ядра образцов поглощают РЧ-энергию определенной частоты и излучают после отключения внешнего импульса. Такое действие могут производить только частицы, ядра которых обладают электрическим зарядом и спином. Такие свойства присущи элементам, в ядре которых присутствует один «лишний» протон (т.е. количество протонов превышает количество электронов). Современная МР томография использует в исследованиях свойства нескольких «органических» элементов, самым популярным из которых является водород Н(1).

Находясь в сильном однородном магнитном поле ядро водорода, состоящее из одного протона, под воздействием радиоимпульса, излученного на определенной частоте (Ларморовская частота резонанса), способно «возбудиться»: энергия поглощенного РЧ-импульса переводит атом водорода на более высокий энергетический уровень. Но это нестабильное состояние неспособно сохраняться без внешнего воздействия, и когда импульсы прекращаются, происходит возврат к стабильному состоянию (релаксация). В процессе этого «остывания» ядро излучает электромагнитную волну, которую можно зафиксировать. Дальнейшее – дело сложных математических пространственных вычислений, в ходе которых сигнал определенного атома превращается в «пиксель» с определенными координатами.

Что заставляет ядро водорода поглощать энергию РЧ-импульса? Именно взаимодействие собственного магнитного поля ядра и наведенного вокруг «объекта исследований», большого, постоянного и ориентированного в определенном направлении магнитного поля, созданного сильными электромагнитами. Каждое ядро атома водорода является единичной магнитной системой, обладающей уникальной направленностью магнитного момента. Магнитные моменты всех протонов принудительно ориентируются в том направлении, в каком направлен вектор магнитной индукции внешнего поля. Энергия РЧ-импульса, излученного на частоте, совпадающей с частотой вращения протонов, поглощается, изменяя положение оси, ориентированной вдоль общего направления магнитного поля (поворачивается на 90 (Т1) и 180 градусов (Т2)). Возврат в нормальное, т.е. «невозбужденное», состояние с разворотом оси вращения в первоначальном направлении сопровождается излучением электромагнитной волны с той же частотой, на которой произошло поглощение энергии. В положениях Т1 и Т2 ядра водорода «запасают» разное количество энергии, и соответственно мощность излучения различается (первое состояние дает меньший импульс, нежели второе).

Это самое простое объяснение сути ядерно-магнитного резонанса в единичной системе, какой является атом водорода, но в плотном веществе для получения результатов требуется более сложное приложение магнитных полей. Для этого введены дополнительные магнитные поля, названные «градиентные». С их помощью можно менять направленность общего магнитного поля в трех измерениях, что позволяет получать изображения в любой проекции (плоскости) и формировать трехмерные изображения с помощью компьютерной обработки (как в компьютерной рентгеновской томографии).

По справедливости томографию следовало бы называть «ядерно-магнитной», т.к. используется именно излучение ядер атомов. Но после аварии, повлекшей разрушение атомного реактора на Чернобыльской АЭС и заражение прилежащих территорий радиоактивными выбросами, любое название, содержащее слово «ядерный», воспринимается со значительной долей нездорового скептицизма. Сокращение было принято для сохранения спокойствия населения, не знакомого с квантовой физикой.

История изобретения, устройство и принцип действия

Современные магнитно-резонансные томографы выпускаются в нескольких технически продвинутых странах, из которых на долю США приходится до 40% общего объема производства. Это не случайно, т.к. большинство основных технологических открытий, касающихся МР томографии, было сделано в американских научных центрах:

  • 1937 год – профессор Колумбийского университета (Нью-Йорк, США) Исидор Раби провел первый эксперимент по исследованию ядерно-магнитного резонанса в молекулярных лучах;
  • 1945 год – в двух университетах (Стэнфорде и Гарварде) проводились фундаментальные исследования ЯМР в твердых объектах (Ф. Блох и Э. Парселл);
  • 1949 год – Э.Ф. Рамсей (Колумбийский университет) сформулировал теорию химического сдвига, легшую в основание МР спектроскопии, обеспечившей химические лаборатории самой точной аналитической аппаратурой;
  • 1971-1977 годы – физик Раймонд Ваган Дамадиан с группой коллег (Бруклинский медицинский центр) создал первый МР-сканер и получил изображение внутренних органов живых объектов (и в том числе человека). В ходе исследований медики выявили, что изображения опухолей сильно отличаются от здоровых тканей. На проектирование и проведение работ потребовалось около 7 лет;
  • 1972 год – химик Пол Лаутербур (Госуниверситет г. Нью-Йорк) получил первое двумерное изображение, используя собственные разработки по применению переменных градиентных магнитных полей.

В 1975 году швейцарский физикохимик Рихард Эрнст предложил методы увеличения чувствительности МРТ (использование преобразований Фурье, фазовое и частотное кодирование), значительно увеличившие качество двумерных изображений.

В 1977 году Р. Дамадиан представил научному миру первое изображение среза грудной клетки человека, сделанное на первом МР-сканере. В дальнейшем техника только совершенствовалась. Особенно большой вклад в развитие МРТ внесло развитие компьютерной техники и программирования, позволившее программно управлять сложным комплексом электромагнитного оборудования и обрабатывать полученное излучение для получения пространственного изображения или двумерных «срезов» в любой плоскости.

На текущий момент существует 4 типа МР-томографов:

  1. На постоянных магнитах (небольшие, переносные, со слабым магнитным полем до 0,35 Тл). Позволяют производить «полевые» исследования во время операций. Наибольшее применение получают постоянные неодимовые магниты.
  2. На резистивных электромагнитах (до 0,6 Тл). Достаточно громоздкие стационарные аппараты с мощной системой охлаждения.
  3. Гибридные системы (на постоянных и резистивных магнитах);
  4. На сверхпроводящих электромагнитах (мощные стационарные системы с криогенной системой охлаждения).

Самое высокое качество изображения, четкое и контрастное, ученые получают на криогенных МР-томографах с сильными магнитными полями до 9,4 Тл (в среднем – 1,5 -3 Тл). Но практика показывает, что для получения качественного изображения требуется не столько мощное поле, но в большей мере быстрая обработка сигналов и хорошая контрастность. С развитием программного обеспечения мощность магнитов стандартных медицинских МР-сканеров снижена до 1-1,5 Тл. Самые мощные томографы изготавливаются для научных медицинских исследований.

Стандартный МР-томограф состоит из нескольких блоков:

  1. Система из нескольких магнитов:
  • большой торовидный магнит, создающий постоянное поле;
  • градиентные магнитные катушки, с помощью которых производится изменение направления вектора магнитной индукции («смещаются полюсы») в трех измерениях. Для смещения градиента изобретены катушки разных форм и размеров (8-образные, седловидные, парные (Гельмготца), Максвелла, Голея). Контролируемая компьютером работа одиночных и парных катушек способна направить моменты ядер в любую сторону или даже развернуть относительно первоначально заданного большим магнитом направления;
  • шиммирующие катушки, необходимые для стабилизации общего поля. Малые магнитные поля этих катушек компенсируют посторонние наводки или возможную неоднородность поля, созданного большим и градиентными магнитами;
  • РЧ-катушка. Радиочастотные катушки создают магнитное поле, пульсирующее с частотой резонанса. Разработаны и применяются три вида катушек: передающие, принимающие и комбинированные (передающе-принимающие). РЧ-излучатель одновременно является и детектором, т.к. при наведении на катушку внешнего излучения, созданного «релаксирующими» протонами, в ее контуре возникают индукционные токи, фиксируемые как РЧ-сигналы. Конструкции детекторов – катушек делятся на два типа: поверхностные и объемные, т.е. окружающие объект. Формы зависят от способов улавливания сигналов, при которых учитываются мощность и направленность излучений. Например, объемная катушка «птичья клетка» служит для получения более качественных изображений головы и конечностей. На томографе установлено несколько парных и одиночных РЧ-катушек для всех видов и направлений РЧ-сигналов.

Самое мощное поле создается сверхпроводящими магнитами. Большой кольцевой магнит, создающий постоянное поле, погружен в герметичный сосуд, наполненный сжиженным гелием (t= -269 о С). Этот сосуд замкнут в другом, большем герметичном сосуде. В пространстве между двумя стенками создан вакуум, что не позволяет гелию нагреться ни на долю градуса (количество вложенных вакуумных сосудов может быть больше двух). Чем меньше сопротивление в проводе катушки, тем выше мощность магнитного поля. Именно этим свойством обосновано применение сверхпроводников, сопротивление в которых близко к 0 Ом.

Система управления томографом состоит из устройств:

  • компьютер;
  • программатор градиентных импульсов (формирует направление магнитного поля с помощью изменения амплитуды и вида градиентных полей);
  • градиентный усилитель (управляет мощностью градиентных импульсов через изменение выходной мощности катушек);
  • источник и программатор РЧ-импульсов формируют амплитуду резонансного излучения;
  • РЧ-усилитель изменяет мощность импульсов до необходимого уровня.

Компьютер управляет блоками формирования полей и импульсов, принимает данные из детекторов и обрабатывает, трансформируя поток аналоговых сигналов в цифровую «картину», которую выводят на монитор и печать.

МР-сканер (т.е. магнитная система) в обязательном порядке окружается системой экранирования от внешних «наводок» электромагнитного и радиоизлучения, которые могут исходить от источников радиосигналов и любых металлических предметов, попавших в сильное магнитное поле. Металлическая сетка или сплошное листовое покрытие стен комнаты создают электрически проводящий экран типа «клетка Фарадея».

МРТ в медицинской диагностике

Магнитно-резонансная томография полностью отличается от рентгеновского просвечивания, т.к. это буквально не «аналоговый» (т.е. фотографический) способ получения изображения, а построение образа с помощью оцифрованных данных. То есть картинка, которую человек видит на экране, является продуктом дешифровки множества микроскопически малых сигналов, которые улавливает детектор томографа (РЧ-катушка). Каждый из этих электромагнитных импульсов обладает определенной мощностью и пространственными координатами внутри тела. Обработка и построение изображения на основании полученных импульсов «релаксации протонов» производится мощным компьютером по специальным программам.

В МРТ используется набор последовательностей РЧ-импульсов, которые создают определенные режимы «возбуждения» протонов водорода в тканях организма с уникальной интенсивностью поглощения и соответствующего возврата энергии. Фактически последовательности являются компьютерными программами, согласно которым производится излучение РЧ-сигналов с определенной амплитудой и мощностью и управление градиентами магнитных полей.

Водород является самым распространенным элементом в теле, т.к. не только присутствует во всех органических молекулах, но и, как компонент воды, содержится в большинстве тканей. Именно поэтому (а также потому, что в ядре только один протон, что позволяет легче вызвать резонанс) томография лучше отображает мягкие ткани, в которых концентрация воды значительно выше. На МРТ-изображении кости, содержащие крайне мало свободных молекул воды, выглядят как непроглядно черные области.

Многочисленные эксперименты показали, насколько различным может быть время релаксации протона, если атом, в котором находится эта элементарная частица, находится в определенном виде ткани. Причем если эта ткань здорова, время «отклика» будет значительно отличаться. Именно по времени релаксации, т.е. скорости возврата РЧ-импульса, компьютером определяется яркость объекта.

В медицинской диагностике с помощью МРТ обследуют не только плотные ткани, но и жидкости: МР-ангиография позволяет определять места образования тромбов, выявлять турбулентности и направление тока крови, измерять просвет сосудов. В исследованиях жидкой среды помогают специальные вещества, изменяющие время отклика протонов в составе жидкости. Контрастные вещества содержат соединения элемента «гадолиний», у которого имеются уникальные магнитные свойства ядер атомов, за которые его называют «парамагнетик».

Также с помощью МРТ измеряется внутренняя температура в любой точке тела. Бесконтактная термометрия основана на измерении резонансных частот тканей (температура измеряется на основании отклонений частоты релаксации в ядах водорода в атомах воды).

В основе построения изображений лежит фиксация трех базовых параметров, которыми обладают протоны:

  • время релаксации Т1 (спин-решеточная, поворот оси вращения протона на 90 о);
  • время релаксации Т2 (спин-спиновая, поворот оси вращения протона на 180 о);
  • протонная плотность (концентрация атомов в ткани).

Другими двумя условиями, влияющими на контрастность и яркость изображения, являются время повторения последовательности и время появления эхо-сигнала.

Используя в последовательностях РЧ-импульсы с определенной мощностью и амплитудой и измеряя время отклика Т1 и Т2, исследователи получают изображения одних и тех же точек тела (тканей) с разной контрастностью и яркостью. Например, короткое время Т1 дает мощный РЧ-сигнал релаксации, что при построении образа выглядит ярким пятном. По комбинации световых характеристик ткани в разных последовательностях выявляются увеличение концентрации воды, жира или конкретное изменение характеристик ткани, говорящее о наличии опухоли или уплотнения.

Для полноты информации о магнитно-резонансной томографии нужно сказать, что управление магнитными полями и радиочастотными импульсами не обходится без «казусов», необычно выглядящих изображений. Их называют «артефактами». Это любая точка, область или черта, присутствующие на изображении, но отсутствующие в организме в виде изменения ткани. Причиной появления таких артефактов могут быть:

  • случайные наводки от неизвестных металлических предметов, попавших в магнитное поле;
  • неисправности аппаратуры;
  • физиологические особенности организма («фантомы», пятна, вызванные движением внутренних органов при дыхании или сердцебиении);
  • неверные действия оператора.

Для устранения «артефактов» проводится внеочередная калибровка и тестирование аппаратуры, пациент и помещение проверяются на наличие инородных предметов, производится повторное обследование в нескольких режимах.

Использование МРТ в диагностике заболеваний позвоночника

Позвоночник – самая подвижная часть опорно-двигательного аппарата. Именно мягкие ткани обеспечивают и подвижность, и целостность позвоночной системы. Если подсчитать все известные и распространенные заболевания позвоночника, на долю повреждений мягких тканей придется до 90% от всех учтенных болезней. А если включить неврологические болезни спинного мозга и спинномозговых нервов и различные виды опухолей, то статистика возрастет до 95-97%. Иначе говоря, болезни, повреждающие костные ткани позвонков, встречаются более чем редко по сравнению с болезнями мягких тканей: межпозвоночных дисков, суставных сумок, связок и мышц спины.

Если сравнивать симптомы различных нарушений целостности мягких тканей, сходство будет исключительным:

  • боли (локальные и распространенные в определенной области);
  • «корешковый синдром» (нарушения целостности спинномозговых нервов и связанные с ними искажения сенсорных сигналов и ответных реакций);
  • различные по силе параличи (плегии), парезы и потери чувствительности.

Именно поэтому результаты магнитно-резонансной томографии имеют высокий статус «решающего слова» в визуализационной диагностике заболеваний позвоночника. Иной раз качественный снимок пораженного участка – это единственный способ окончательно утвердить диагноз, сделанный на основании предварительного осмотра, неврологических тестов и анализов.

Показанием для проведения обследования в МРТ считается наличие воспалительных процессов в области позвоночного столба, сопровождающихся активной иммунной реакцией (повышение температуры тела, отекание тканей, покраснение кожного покрова). Анализы подтверждают наличие иммунной реакции, но не способны указать точное положение места инфицирования и воспаления. МР томограмма с точностью до 1 мм устанавливает координаты очага, ареал распространения воспалительного процесса. МР ангиограммы укажут границы тромбирования сосудов и отека тканей. В исследовании хронических заболеваний (остеохондроз во всех стадиях, спондилоартроз и т.п.) МРТ показывает исключительную полезность.

Также прямым показанием для применения МРТ являются симптомы, указывающие на возможное образование абсцессов в эпидуральной области: сильные локализованные боли, «корешковый синдром», прогрессирующая потеря чувствительности и парализация конечностей и внутренних органов.

Инфекционные заболевания, способные повредить все типы тканей (туберкулез, остеомиелит), требуют комплексного исследования с помощью МРТ и компьютерной томографии (КТ). На МР томограммах выявляются поражения нервных тканей, хрящевых межпозвоночных дисков, суставных сумок. КТ дополняет общую картину данными о разрушениях костных тканей тел позвонков и отростков.

Повреждения спинного мозга и близких к ним тканей (кровеносных сосудов, оболочек мозга, внутренней надкостницы спинномозгового канала) требуют многосторонних и кропотливых исследований на МРТ, т.к. большая часть нарушений нервных тканей связана с образованием опухолей (доброкачественных и раковых), изредка – абсцессов (эпидуральных и субдуральных). Исследования магнитно-резонансной томографии первоначально были нацелены на выявление именно опухолевых образований в ЦНС. Многолетние наблюдения и систематизация накопленного опыта позволяют исследователям определять появляющиеся новообразования на первой стадии, «в зачаточном состоянии».

Развитие сканерной техники направлено на повышение детализации, контрастности и яркости изображения объектов любого размера, а также на максимально быстрое получение данных после излучения РЧ-импульса. Современный МР-томограф способен «показывать» происходящие процессы в реальном времени: сердцебиение, движение жидкостей, дыхание, сокращение мышц, образование тромба. Малые открытые МР-сканеры на постоянных магнитах позволяют производить операции с минимальным уровнем повреждений поверхностных тканей (интервенционная МРТ).

Компьютерное программирование позволяет построить по данным, полученным со сканера, объемное изображение на экране монитора или с помощью лазерной техники.

Развивается направление МРТ исследований позвоночника в вертикальном положении. Подвижная установка оборудована столом, меняющим положение на 90 о, что позволяет снять в реальном времени изменения в позвоночном столбе при увеличении вертикальных нагрузок. Особенно ценны такие данные при изучении травм (переломов разных типов) и спондилолистеза.

По отзывам проходивших обследование, они не испытывают никаких болезненных ощущений. Самое большое впечатление на них производит шум, который создает аппаратура: «сильный стук в стенках тоннеля, как будто поблизости работает перфоратор». Это вращается подвижная деталь постоянного магнита.


Противопоказания

Однозначным препятствием проведению МРТ обследования является наличие в теле пациента имплантатов и устройств, содержащих металлы, в любой степени обладающие свойствами ферромагнетиков. Для информации: только чистый титан, применяющийся для создания вертебральных систем фиксации, не обладает магнитными свойствами.

Наличие в теле пациента кардиостимулятора, кохлеарного имплантата с электронным оборудованием и металлическими деталями сразу вызовет в магнитном поле возмущения, которые на томограмме создадут «артефакт». Кроме того, электронный аппарат выйдет из строя, причинив владельцу максимальный ущерб. К такому же результату приведет наличие в теле искусственных суставов, штифтов, скоб или даже осколков металла, оставшихся после ранения. Некоторые химические соединения, входящие в состав красок для татуажа, также обладают ферромагнитными свойствами (в частности, микроскопические частицы способны нагреваться в сильном магнитном поле, что приводит к ожогам глубоких слоев эпидермиса).

Во время обследования от пациента требуется максимальная неподвижность во время достаточно продолжительного времени. Препятствием к проведению МРТ может быть психическая нестабильность, определенные фобии (клаустрофобия, например), которые вызовут у обследуемого шоковое состояние, истерику, непроизвольную подвижность.

Для повышения качества изображения могут применяться контрастные вещества (соединения гадолиния), свойства которых еще не до конца изучены. Например, как они могут подействовать на развитие плода во время первых трех месяцев беременности. Поэтому не рекомендуется проводить обследования беременных женщин, требующие применения контрастных веществ. Кроме того, у людей, имеющих индивидуальную физиологическую непереносимость, эти препараты могут вызвать непредвиденную анафилактическую реакцию.

Совершенствование техники, использующей явление ядерно-магнитного резонанса, дает медикам, химикам и биологам мощный инструмент для исследования текущих процессов в живом организме и поиска патологий на самых ранних стадиях развития.

Статьи по теме

Astrei 17 июля 2017 в 06:52

Разбираем магнитно-резонансный томограф

  • DIY или Сделай сам ,
  • Электроника для начинающих


Квантовая физика, математика, биология, криогеника, химия и электроника сплелись единым узором, чтобы воплотиться в железе и показать настоящий внутренний мир человека, и даже, ни много ни мало, прочитать его мысли. Электроника таких аппаратов, по надежности и сложности может сравниться разве что с космической. Эта статья посвящается оборудованию и принципам работы магнитно-резонансных томографов.

В области современного томографостроения лидируют мастодонты электронного мира: Siemens, General Electric, Philips, Hitachi. Только такие крупные компании могут позволить себе разработку столь сложного оборудования, стоимость которого как правило составляет десятки (почти сотни) миллионов рублей. Разумеется, ремонт такой дорогущей техники у официального представителя влетает в огромную копеечку владельцу аппарата (а они к слову в основном частные, а не государственные). Но не стоит отчаиваться! Также как и сервис-центры по ремонту ноутбуков, телефонов, чпу-станков, да собственно любой электроники существуют фирмы, занимающиеся ремонтом медицинского оборудования. В одной из таких фирм я и работаю, поэтому продемонстрирую вам интересную электронику и постараюсь описать ее функционал понятными словами.


Магнитно-резонансный томограф фирмы GE Healthcare с полем 1.5 Тесла. Стол отсоединяется от томографа и может быть использован как обычная каталка.

Вся магия МРТ начинается с квантовой физики, откуда берет свое начало термин «спин», применяемый к элементарным частицам. Можно встретить кучу определений, что такое спин, общепринято - это момент количества движения частицы, что бы это не значило. В моем понимании частицы как-бы постоянно вращаются (упрощенно) создавая при этом возмущения в магнитном поле. Так как элементарные частицы в свою очередь образуют ядра атомов, считается, что их спины при этом складываются и ядро обладает собственным спином. При этом, если мы хотим как-то взаимодействовать с ядрами атомов с помощью магнитного поля, нам будет очень важно, чтобы спин ядра был ненулевой. Совпадение или нет, но самый распространенный в нашей вселенной элемент - водород имеет ядро в виде одного единственного протона, который имеет спин равный 1/2.

Кстати

Спин может принимать только определенные значения, как целые например 0,1,2, так и полуцелые, вроде 1/2 как у протона. Для незнакомых с квантовой физикой это кажется противоестественным, но на квантовом уровне все делится на порции, и становится в некотором роде дискретным.


А это означает, что упрощенно, ядра водорода можно рассматривать как очень маленькие магниты, имеющие северный и южный полюс. И стоит ли упоминать, что в теле человека атомов водорода просто море (около 10^27), но так как мы не притягиваем к себе железки, становится очевидно, что все эти маленькое «магниты» уравновешиваются между собой и остальными частицами, и общий магнитный момент тела практически равен нулю.


Иллюстрация из книги Эверта Блинка «Основы МРТ». Протоны с черными стрелками, символизирующими стрелку компаса вращаются в направлении синей стрелки.

Приложив внешнее магнитное поле, можно вывести эту систему из равновесия и протоны (не все конечно) поменяют свою пространственную ориентацию в соответствии с направлением силовых линий поля.


Иллюстрация из книги Lars G. Hanson Introduction to Magnetic Resonance
Imaging Techniques. Спины протонов в теле человека показаны в виде векторов-стрелочек. Слева отражена ситуация когда все протоны находятся в магнитном равновесии. Справа - когда приложено внешнее магнитное поле. Нижние визуализации показывают тоже самое в трехмерном варианте, если построить все векторы из одной точки. При всем этом, происходит вращение (прецессия) вокруг силовых линий магнитного поля, которая показана круглой красной стрелкой.

Прежде чем протоны сориентируются в соответствии с внешним полем, они будут какое-то время колебаться (прецессировать) около положения равновесия, как и стрелка компаса, что колебалась бы возле отметки «север», если бы производитель предусмотрительно не добавил бы демпфирующую жидкость внутрь циферблата. Примечательно, что частота таких колебаний различается для разных атомов. На измерении этой частоты например, основаны методы резонансного определения состава исследуемого вещества.

Кстати

Частота эта не безымянная и носит имя ирландского физика Джозефа Лармора, называется соответственно Ларморовой частотой. Зависит от величины приложенного магнитного поля и специальной константы - гиромагнитного соотношения, которая зависит от типа вещества.


Для ядер атомов водорода в поле величиной 1 Тесла эта частота составляет 42,58 МГц, ну или простыми словами, колебания протонов вокруг силовых линия поля такой напряженности происходят около 42 миллионов раз в секунду. Если мы облучим протоны радиоволной с соответствующей частотой, то возникнет резонанс, и колебания усилятся, вектор общей намагниченности при этом сместится на определенный градус относительно линий внешнего поля.


Иллюстрация из книги Lars G. Hanson Introduction to Magnetic Resonance Imaging Techniques. Показано как смещается общий вектор намагниченности, после воздействия радиоволны с частотой, которая вызывает резонанс в системе. Не забываем, что все это продолжает вращаться относительно силовой линии магнитного поля (на рисунке она расположена вертикально).

Тут и начинается самое интересное - после взаимодействия радиоволны с протонами и резонансного усиления колебаний, частицы снова стремятся придти к равновесному состоянию, при этом, излучая фотоны (из которых и состоит радиоволна). Это и называется эффектом ядерного магнитного резонанса. По сути, все исследуемое тело превращается в огромный массив миниатюрных радиопередатчиков, сигнал с которых можно поймать, локализовать и построить картину распределения атомов водорода в веществе. Так что, как вы уже догадались, по сути МРТ показывает картину распределения воды в организме. Чем сильнее напряженность поля, тем большее число протонов можно использовать для получения сигналов, поэтому разрешающая способность сканера напрямую зависит от этого.

Сей эффект проявляется не только в сильных магнитных полях - каждый день, даже по пути в магазин за хлебом, протоны нашего тела испытывают влияние магнитного поля Земли. Исследователи из Словении например, построили экспериментальную систему МРТ, использующую лишь магнитное поле нашей планеты.


Иллюстрация из научной статьи «Magnetic Resonance Imaging System Based on
Earth’s Magnetic Field» Авторы: Ales Mohoric, Gorazd Planins и др. Демонстрирует снимки, полученные с использованием экспериментальной системы. Слева яблоко, справа - апельсин. Показательно не то, что получаются снимки с плохим качеством, а сама принципиальная возможность использования МР в слабых полях.

Разумеется, в коммерческих медицинских сканерах, напряженность магнитного поля многократно выше земного. Наиболее часто используют сканеры с полем 1, 1.5 и 3 Тесла, хотя есть как более слабые (0.2, 0.35 Тесла), так и суровые монстры в 7 и даже 10 тесла. Последние используют в основном для исследовательской деятельности, и в нашей стране насколько мне известно, таких нет.

Конструктивно поле в сканере может создаваться по разному - это и постоянные магниты, и электромагниты, и погруженные в кипящий гелий сверхпроводники по которым текут огромные токи. Последние широко распространены, и представляют наибольший интерес, так как позволяют добиться несравненно большей напряженности поля по сравнению с другими вариантами.


Типичная конструкция аппарата МРТ, поле в котором создается током, текущим через сверхпроводники. Источник - интернет.

Температура сверхпроводящих обмоток поддерживается благодаря постепенному испарению хладагента - жидкого гелия, кроме того в системе работает криокулер, на жаргоне медтехников называемый «холодной головой». Он издает характерные чавкающие звуки, которые вы наверняка слышали если хоть раз видели аппарат вблизи. Ток в сверхпроводниках течет постоянно, а не только во время работы аппарата, соответственно магнитное поле есть всегда. На незнании этого факта часто попадаются киношники (например в последнем сезоне сериала «Черное зеркало» был подобный ляп).

На панели управления аппаратов такого типа есть большая красная кнопка, позволяющая отключить магнитное поле (Rundown magnet). Она не без иронии называется «Кнопка увольнения».


Одна из панелей управления томографом фирмы Siemens

Нажатие этой кнопки включает аварийные нагреватели в емкости с хладагентом, которые поднимают температуру обмоток до критической точки, после которой процесс идет лавинообразно: после приобретения обмотками сопротивления, ток через них моментально разогревает их и все вокруг, приводя к выбросу гелия через специальную трубу. Этот процесс называется «квенч», и это наверное самое грустное, что может случится с аппаратом, так как восстановление его работоспособности после такого занимает очень много времени и денег.


Томограф Siemens Espree, с полем 1.5. Тесла, обратите внимание на металлические ключи, которые спокойно лежат на столе - магнитного поля тут больше нет. Был закуплен для некоторых государственных клиник у компании Siemens. Имеет сравнительно малые размеры емкости и большой диаметр апертуры. Есть мнение, что подобное укорочение конструкции вылилось в то, что он любит часто пускать гелий на ветер сам по себе (по крайней мере аппарат на фото делает это с завидной регулярностью).

Тем временем после небольшого отступления, снова вернемся к теории. Если просто принимать радиоволны испускаемые протонами тела в ответ на резонансные радиоимпульсы, картинку не построить не выйдет. Как же локализовать сигнал, который идет сразу со всех частей тела? В свое время исследователи Пол Лотербур и Питер Мэнсфилд получили за решение этой проблемы нобелевскую премию по медицине. Если вкратце, их решение состоит в применении дополнительных обмоток в аппарате, создающих практически линейное изменение напряженности магнитного поля вдоль выбранного направления - градиент поля. Так как наше пространство вроде как трехмерное, то и обмоток используется три - оси X, Y и Z.


Иллюстрация из книги Эверта Блинка «Основы МРТ». Примерно так выглядят дополнительные градиентные обмотки внутри аппарата - реальные обмотки имеют конечно более сложную структуру.

Если напряженность магнитного поля изменяется по линейному закону, то при активации одного из градиентов протоны вдоль этого направления будут иметь различную резонансную частоту.


Иллюстрация с сайта howequipmentworks.com. Символически нарисованы градиентные обмотки (синим) и радиочастотная обмотка (зеленым). Показано что при создании градиента поля вдоль стола в точке А резонансная частота протонов будет отличатся от частоты в точке B

Использование градиентов позволяет манипулировать полем так, чтобы сигнал приходил только из конкретно определенных областей. В зависимости от амплитуды полученного сигнала выбирается яркость пикселя на картинке. Чем больше концентрация протонов в области - тем ярче результат.

Конечно...

Такое описание конечно сильно утрировано. Реально же сигнал локализуется комбинированием сразу всех трех градиентов, причем картинка строится не пиксель за пикселем, как можно подумать из этого описания, а сразу целой строкой. Не последнюю роль в этом играет и известное преобразование Фурье. Подробное описание можно прочитать в книге «Introduction to Magnetic Resonance Imaging Techniques» Lars G. Hanson. Данная статья увы все не вместит.


Чтобы создать градиент магнитного поля, нужно пропустить через градиентные обмотки большой ток, причем импульс должен быть довольно кратковременным, и с крутым фронтом, а для некоторых программ и вовсе требуется, чтобы направление тока в градиентной обмотке мгновенно менялось на противоположное для перемагничивания. Этим занимаются мощные импульсные преобразователи, они занимают целую стойку в аппаратной.


Градиентные усилители аппарата Siemens Harmony 1T. Рабочие характеристики - до 300 Ампер и до 800 Вольт, при использовании шести модулей - на фото представлено три модуля.

В аппаратах Siemens традиционно используется водяное охлаждение силовых компонентов - трубки видно на фото. Это нередко выливается (интересный каламбур) в хороший салют при любой течи. Несмотря на хваленое немецкое качество, никто не озаботился установкой датчиков протечки (в этом плане им стоило бы поучиться у GE). Но справедливости ради, конкретно градиентные блоки текут редко, чаще они выходят из строя без видимой причины.


Внутренности градиентного модуля от Siemens Harmony старого типа.

Модуль вроде тех, что показан на фото тяжело поддается ремонту - транзисторы приклеены к медной трубке на что-то вроде холодной сварки, и горят они там сразу десятками. Чтобы снять плату, требуется отпаять одновременно несколько десятков ножек! Лучше забудем этот кошмар, и посмотрим на более свежее решение от немецкого производителя.


Градиентный усилитель от Siemens Harmony. Более новая версия. Две симметричные платы прикручиваются болтами к очень мощным полевым транзисторам. Транзисторы работают группами по шесть штук параллельно, горят конечно тоже не по одному. Модель на фото уже слегка «отколхожена», вместо родных разъемов между платами впаяны медные пластины. Обратите внимание на верхний правый угол фото - это оптические кабели по которым идет сигнал на открытие ключей. Если перепутать их подключение - блок тут же сгорает с громким хлопком, никакой защиты «от дурака» в такой технике не предусмотрено.

Одной из главных проблем при ремонте является отсутствие какой-либо документации, тем более, оборудование весьма специализированное. Поэтому порой приходится набить немало шишек и пожечь довольно много недешевых компонентов, чтобы понять что же было не так. Конечно, за деньги можно купить и сервисные мануалы, но как правило, они весьма поверхностные. Крутые фирмы надежно хранят свои секреты.

Чем сильнее магнитное поле в аппарате, тем соответственно более мощными должны быть и градиентные преобразователи. В аппаратах с полем 1.5 Т и 3 Т куча параллельных полевых транзисторов, которые нужно набрать для обеспечения необходимой мощности, становится чересчур огромной, в дело вступают IGBT сборки, подобные тем, что ставят в промышленные преобразователи частоты для управления двигателями.

Градиентный усилитель Quantum Cascade в разборе, ток до 500 Ампер, выходное напряжение до 2000 В. В его составе работают 20 мощных IGBT сборок. Здесь есть интересный момент - сама по себе сборка не выдержит 2 киловольта, это напряжение получается путем использования пяти независимых источников по 400В каждый. Моя мечта - собрать из этого агрегата катушку Тесла.

Что же творится с градиентными обмотками, когда по ним текут такие чудовищные токи, с учетом того что они еще и находятся в неслабом магнитном поле? Сила Ампера разумеется заставляет их деформироваться, но они накрепко залиты смолой по самое немогу. Тем не менее, даже это не спасает - так как градиенты работают в диапазоне звуковых частот, то возникающие при этом вибрации могут порождать довольно громкие звуки, по громкости напоминающие удар молотком по гвоздю (с той оговоркой, что вы слышали как стучат молотком около 5000 ударов в секунду). Поэтому практически в любом аппарате МРТ есть наушники, либо беруши. Софт и аппаратура постоянно контролируют уровень звука в помещении сканера, чтобы децибелы не выходили за допустимые пределы. Быстро изменяющееся при работе градиентов магнитное поле, вкупе с порождающими резонанс радиочастотными импульсами наводит вихревые токи в любой металлической поверхности рядом со сканером, что приводит к вибрации металла и небольшому нагреву, а на снимках даже от маленькой металлической пломбы появятся характерные артефакты. Именно по этой причине перед обследованием в МРТ требуют избавиться от всего металла (пломбы снимать не надо).

За создание радиочастотных импульсов нужной частоты отвечает блок синтезатора (в аппаратах Siemens) или же эксайтер (в случае аппаратов GE). Несмотря на разные названия, их функции примерно одинаковы. Эти блоки как правило надежны и редко требуют ремонта, если с ними аккуратно обращаться. Сигнал формируется путем цифро-аналогового синтеза, и представляет собой sinc-функцию.


Слева продемонстрированы два вида радиочастотных импульсов - гауссиан и sinc, он же так называемый кардинальный синус. Справа показан профиль возбуждения при их использовании в качестве радиочастотного возбуждающего сигнала - то есть примерно показана форма области, где протоны войдут в резонанс, вид сбоку. Разумеется нижняя версия более предпочтительна для создания изображений (слайсов), особенно когда они расположены близко друг к другу, чтобы уменьшить влияние сигналов за пределами выбранной области сканирования.

Наконец, мы подошли без преувеличения, к самому интересному по моему мнению блоку во всем томографе - радиочастотный усилитель мощности, который преобразует слабый сигнал с синтезатора в мощный, подаваемый на передающую антенну в аппарате.

Еще кстати

В иностранной литературе все антенны, относящиеся к томографу зовуться «Coil», по-русски прижилось название «катушка». Вы вряд ли где-либо еще услышите слово «антенна» применительно к МРТ. Body coil - или «Боди-катушка» на местном диалекте - основная приемо-передающая антенна томографа, но кроме нее есть и другие, но о них - далее.


Мощность усилителя для томографа с полем 1Т составляет 10кВт, для поля 1.5Т уже 15 кВт, соответственно для более высокопольных аппаратов требуются большие мощности в плане радиочастотного излучения. Это одна из причин, почему высокопольные аппараты еще прочно не вошли в клиническую практику. Но давайте без фанатизма - постоянно разговаривая по мобильнику вы пооблучаетесь побольше чем за один сеанс в аппарате МРТ.
Как правило этот блок совмещает в себе сложные запутанные схемы управления и защиты, радиочастотные фишки, большие напряжения, а также проблемы с охлаждением.

В томографах General Electric и Hitachi ставят усилители мощности, изготавливаемые фирмой Analogic. Отличаются красивой компоновкой компонентов на плате, высокой живучестью - как правило в их усилителях несколько транзисторных каскадов работают параллельно, причем выходной сумматор устроен так, что при отказе одного каскада усиления, блок продолжит работать, хоть и не на полную мощность.


Плата усилителя из аппарата GE. Красивая и эффектная конструкция!

Блок целиком


В аппарате с полем в 1.5Т стоят два таких красавца, по 8 кВт каждый. Верхняя девятислойная (!) плата - это хитрый импульсный блок питания, а сам усилитель размещен на нижней плате. К нам он попал по причине неисправности верхней платы. За отсутствием времени на разбирательства со схемой, успешно хакнули и собрали из двух серверных блоков питания замену. Кроме того путем подбора более крутых по характеристикам транзисторов смогли добиться усиления большего чем было изначально.


Усилитель мощности с томографа Hitachi


Этот малыш работает в системе с магнитным полем в 0.35Т, тем не менее легко угадывается похожесть на технику из GE - производитель один.


К сожалению, не могу сказать того же про продукцию Siemens. Очевидно, что перед инженерами, проектировавшими устройство радиочастотного усилителя поставили задачу во чтобы то ни стало использовать производимый компанией дешевый транзистор Buz103. Это хилый компонент в плане допустимой для него мощности, и чтобы выкрутится из положения, в итоговую конструкцию усилителя с красивым именем «Dora» вставили 177 транзисторов, все они стоят на двух огромных радиаторах, которые при работе находятся под высоким напряжением и контактируют через термопрокладку с радиатором водяного охлаждения, а тот уже в свою очередь постоянно течет, причем прямо на плату, что на фото далее.


Плата усилителя Siemens усилителя мощности 10кВт. Сплошные электротехнические понты: индуктивности из дорожек, идущие через несколько слоев, сложнейшая схема управления транзисторами на 10-слойной плате, резонаторы из полигонов и прочие малоприятные вещи.

Ремонтопригодность усилителя этой фирмы практически никакая. Имея в своем распоряжении производство транзисторов Siemens может позволить себе собрать близкие по параметрам детали из партии, путем отбора, а это очень критично когда параллельно работает сразу сотня транзисторов. И самое обидное, что даже если купить нужное количество на замену, то выяснится что то, что находятся в продаже оказывается не тем чем кажется.


Вскрытие транзисторов - снаружи все подписаны и выглядят одинаково, внутри - все разные. Оригинал - крайний справа. Те, что с меньшей площадью кристалла чем у оригинала - горят как спички, второй справа хоть и имеет близкую площадь, но отвратительно работает в режиме усиления.

Вероятно у кого нибудь может возникнуть вопрос, почему в описанных усилителях применяют транзисторы, а как же лампы? Действительно, в старых агрегатах фирмы Siemens, а также во вполне современных аппаратах Philips с полем в 3Т применяют именно лампы. Увы, фото данного железа у меня нет, но могу сказать что срок службы у этих элементов составляет всего год-два, а цена у них немалая. Вообще, как то в статье обделил вниманием Philips, нехорошо вышло. Исправлюсь немного:


МРТ нового типа - Philips Panorama. Как правило аппараты открытого типа основаны на постоянных либо электромагнитах, что автоматом означает низкое поле и качество картинки. Но не в этом случае. Поле этого аппарата 1 Тесла, и здесь также применяется сверхпроводник. Огромное по сравнению с обычным томографом пространство позволяет проводить исследование крупных пациентов, либо тех кто боится замкнутого пространства, например детей.

Мощность радиочастотного сигнала контролируется в самом блоке усилителя мощности, в измерительном блоке, осуществляющем подстройку передающей антенны (катушки) и еще в приемнике. Таким образом, аппарат МРТ имеет троекратную защиту от превышения допустимых норм радиоизлучения. Так что не бойтесь, и смело проходите обследование.

Несмотря на всю мощь усилителей, описанную выше, сигнал, получаемый в ответ на резонансное возбуждение довольно мал. Поэтому передающую антенну (Body coil), описанную ранее и находящуюся в корпусе томографа редко используют в режиме приема сигнала. Вместо этого, существует большой набор катушек (coils) для любых частей тела - голова, спина, колено, плечи и.т.п. Они находятся гораздо ближе к объекту исследования и позволяют добиться лучшего качества изображения. Но я думаю вы уже устали от кучи информации, поэтому я просто засуну в томограф арбуз.


Арбуз готовится к исследованию. На нем сверху лежит катушка, предназначенная для грудной области, под ним - катушка для спинного отдела и позвоночника. Справа на полу - шар для предсказаний специальный объект для калибровки систем аппарата, так называемый «фантом»


Мало кто режет арбузы в поперечном направлении. Аппарат МРТ позволяет сделать это без ножа. Знали ли вы об интересной фрактальной структуре внутри? Обратите внимание, что верхняя часть, которая ближе к приемным элементам катушки светлее, так как амплитуда сигнала, получаемого из этой области выше, чем снизу ягоды.


Продольный разрез уже знаком всем. Думаю, арбуз спелый, можно брать.

Сигнал с катушек поступает в блок приемника в виде аналоговых сигналов, где перерабатываются в цифровую форму. В новейшем оборудовании на острие прогресса, приемник с аналогово-цифровым преобразователем встроен прямо внутрь катушки, а к компьютеру идет оптическая линия передачи данных. Это сделано для того чтобы максимально убрать помехи. Компьютер, занимающийся построением изображения из этих данных обычно стоит отдельно и называется реконструктором. Полученные изображения печатают на пленку, которая кстати хорошо подходит для фоторезиста.

В заключение еще хотел добавить, что в России прямо сейчас проводят интересные исследования по улучшению качества изображения в аппаратах МРТ. Этим занимается кафедра нанофотоники и метаматериалов университета ИТМО. Если простыми словами - метаматериалы это композиты, имеющие специальную структуру. Они позволяют создавать антенны и резонаторы, с очень малыми размерами по сравнению с длинной волны излучения, что идеально подходит для магнитно-резонансной томографии.

МРТ: принцип и возможности метода, области применения, показания и противопоказания

Одним из самых современных способов изучения человеческого организма является МРТ . Послойное изображение тканей при этом методе возможно благодаря такому явлению, как ядерно -магнитный резонанс (ЯМР). Несмотря на страшное название ничего общего с радиацией этот способ исследования не имеет.

В чем суть?

Более ранние диагностические процедуры (рентгенологическое исследование и – КТ) имеют противопоказания для части пациентов из-за лучевой нагрузки. В основе же МРТ лежат свойства магнитного поля.

Эффект ЯМР был открыт в середине прошлого века. Доказано, что ядра отдельных атомов поглощают энергию электромагнитного импульса, преобразуют ее в радиосигнал, который затем излучают.

В медицине этот метод был применен только спустя 30 лет. В восьмидесятых годах в столице Франции проходил всемирный конгресс радиологов. Тут-то ученые и продемонстрировали первые аппараты МРТ, в основе действия которых был ЯМР водорода ‒ наиболее встречающегося в природе элемента. Полученные сигналы обрабатывает компьютерная программа, после чего врач-радиолог получает снимки срезов тканей.

Метод развивается и совершенствуется, расширяются его области применения. Сегодня МРТ с успехом используется для диагностики патологий позвоночника, сосудов, органов брюшной полости и малого таза, сердца, опорно-двигательного аппарата.

В чем преимущества метода?

  1. Неинвазивность;
  2. Информативность;
  3. Отсутствие осложнений;
  4. Безопасность;
  5. Практически не нужна подготовка;
  6. Трехмерные изображения.

Что представляет собой аппарат МРТ?

Диагностический аппарат состоит из большой трубы в виде цилиндра и магнита, расположенного вокруг нее. Больной ложится на стол, движущийся внутри трубы. Сегодня в распоряжении медицины имеются различные виды томографов, в том числе с открытыми боками и укороченным туннелем. Возможности аппаратов последних моделей очень большие: с их помощью получают четкие снимки различных частей тела. Однако не все исследования можно провести одинаково качественно на томографах разных видов, например, на открытом. В каждом случае необходим совет специалиста. После сканирования изображение обрабатывает компьютер, который размещается в другом помещении, соседствующем с аппаратом.

Надо ли бояться обследования?

Исследование МРТ проводится при госпитализации больного, а также в амбулаторных условиях. Тело человека закрепляется ремнями неподвижно на специальном столе. Радиоволновые устройства размещают около обследуемой части тела.

Иногда процедуру проводят с контрастированием. В этом случае контрастное вещество подается в кровь посредством катетера.

По окончании подготовительных мероприятий пациента передвигают к центру магнита. Медицинский персонал уходит в другое помещение, в котором расположен компьютер. С его помощью обрабатываются данные томографического исследования. О начале сканирования свидетельствуют звуки (щелчки) аппарата. В это время важно сохранять неподвижность. В паузах пациенту можно чуточку расслабиться, но, тем не менее, сохранять неподвижность необходимо.

После процедуры катетер достается. Как правило, исследование проходит в течение 45 минут.

Побочные эффекты исследования

    • В общем-то, процедура МРТ безболезненная. Однако от неподвижного лежания пациент может чувствовать себя не совсем комфортно.
    • Есть люди, которых пугает закрытое пространство. Таким пациентам рекомендуется томограф открытого типа. Также врач может предложить принять успокоительные лекарственные средства. Но таких людей немного – 1/20 от всех обследованных.
    • Может повыситься температура участка тела, которое подвергается изучению. Тревожиться не следует, поскольку это вполне нормально.
    • Некоторых людей волнует одиночество: ведь радиолог и другой медицинский персонал находятся в соседнем помещении. Другие боятся, что их возможное плохое самочувствие останется незамеченным врачом. Однако беспокоиться не нужно: при исследовании предусмотрена возможность общения пациента с медицинским персоналом.
  • Сканер довольно громко гудит, поэтому пациенту предлагают воспользоваться наушниками или берушами.
  • Во время установки катетера и подаче контрастного вещества больной может испытывать дискомфорт. Также не исключено появление во рту привкуса металла.
  • Очень редко у пациента наблюдается аллергия на контрастное вещество: зуд, раздражение глаз. Иногда его начинает тошнить, появляется боль. Об этом обязательно нужно сообщить врачу.
  • Кормящим мамочкам рекомендуется прекратить грудное вскармливание хотя бы на сутки после попадания в кровь контрастного вещества. Все это время надо из каждой груди сцеживать молоко. Полагают, что за 24 часа это вещество полностью выводится из организма. Хотя по некоторым данным составляющие контрастного вещества не токсичны для ребенка. Но, как говорится, береженого Бог бережет!

Видео: проведение процедуры МРТ

Изучение сосудов мозга

На сегодняшний день разработано несколько режимов и программ для проведения МРТ сосудов головного мозга. Способ обследования врач отмечает в истории болезни пациента и указывает в направлении на МР-томографию. Поэтому важно, чтобы посещение медучреждения предшествовало проведению процедуры МРТ головного мозга. Специалист при составлении плана исследования обязательно учтет все противопоказания.

Один из наиболее безопасных и вместе с тем эффективных способов исследования мозга − метод МРТ. В результате МРТ сосудов головного мозга оценивается не только их структура, но и функциональное состояние. Обычно радиолог получает довольно отчетливое изображение сосудов, однако в некоторых сложных случаях исследование проходит с контрастом.

В результате исследования удается сделать множество срезов проблемной области, получить ее изображение в разных плоскостях, рассмотреть специфику движения крови. Нужную часть исследуемого сосуда можно выделить в определенной проекции.

Когда проводят томографическое обследование головы?

К основным показаниям к МРТ сосудов головного мозга относятся:

Возможности , которые открываются с применением метода МР-томографии:

  • Исследование помогает составить правильный план лечения;
  • Контролируется ход лечения;
  • Уточняется диагноз;
  • Патология распознается в самые ранние сроки ее развития.

МРТ сосудов головы визуализирует не только сами сосуды, но и окружающие их ткани. Причем это происходит без использования рентгеновских лучей и контрастного материала, применяемого в случае компьютерной томографии.

Метод помогает определить точную локализацию тромбов, повреждений стенок сосудов, .

Без сомнения, метод МРТ благодаря своей безопасности и высокой информативности превосходит более ранние способы диагностики: КТ и рентгенографию. Сделать МРТ сосудов головного мозга можно в любом медицинском учреждении, в котором есть соответствующее оборудование.

Видео: МРТ головного мозга

Исследование позвоночника

Если в недалеком прошлом изучить состояние позвоночного столба можно было только с помощью рентгенографических методов (что не всегда безопасно), то появившийся позже метод магнитно-резонансной томографии стал настоящим прорывом в диагностике. По сути, медицина вышла на совершенно новый уровень. С помощью данной неинвазивной методики изучается развитие патологического процесса в динамике. Получают трехмерные срезы проблемных участков. Полученные изображения выводятся на монитор компьютера, далее снимки можно распечатать и разместить в истории болезни.

Обычно МР-томографию позвоночного столба назначают для уточнения диагноза при болях в спине или ногах. С помощью метода МР-томографии возможно:

  1. Обнаружить повреждения межпозвоночных дисков;
  2. Определить степень давления на корешки нервов поврежденного диска;
  3. Диагностировать врожденную патологию исследуемого органа;
  4. Определить нарушения в движении крови в том или ином участке позвоночника;
  5. Диагностировать опухоли костной и нервной ткани;
  6. Выявить сужение спинномозгового канала;
  7. Увидеть травматические повреждения в нервных волокнах;
  8. Обнаружить метастазы злокачественных опухолей легких, простаты, груди;
  9. Найти изменения в нервных волокнах, произошедшие в результате заболеваний;
  10. Выявить очаги воспаления, остеопороз;
  11. Обнаружить область позвоночника, пораженную инфекцией.

  • Человеку с протезами (что касается зубных протезов, их наличие не является противопоказанием), кардиостимулятором и другими металлосодержащими включениями;
  • Больным с судорожным синдромом и ;
  • Людям с расстройством психики;
  • Пациентам с клаустрофобией;
  • Тем, у кого может развиться аллергическая реакция на контраст.

Специально готовиться к процедуре не нужно. Естественно, все металлические предметы пациенту придется снять, так как он будет находиться в сильном магнитном поле.

Исследование шейного отдела позвоночника

Одним из наиболее сложных и важных узлов человеческого организма является шейный отдел позвоночного столба. В этом месте находится много кровеносных сосудов, нервные и мышечные волокна, позвоночные элементы. При их патологии страдают все системы организма. Иногда заболевания сопровождаются сходными симптомами, поэтому, чтобы постановить правильный диагноз, назначается процедура МРТ шейного отдела позвоночника и сосудов шеи.

Показания к проведению МРТ позвоночника

  1. Дистрофически-дегенеративные изменения тканей позвоночника;
  2. Травмы шеи;
  3. Врожденные аномалии органа;
  4. Подозрения на грыжи и смещение позвоночных дисков;
  5. Спондилоартрит, остеомиелит, спондилит;
  6. Подозрения на метастазы;
  7. Предстоящая операция на позвоночнике.

Эти заболевания проявляются болями в руках, звоном в ушах, онемением шеи, ухудшением слуха и зрения, колебанием артериального давления. МРТ- сосудов шеи позволяет выявить причины нарушения работы организма.

МР-томография сердца

Сердечнососудистой системе в организме принадлежит особая роль – кровообращение. Благодаря работе сердца кровь поступает ко всем клеткам человеческого тела и приносит к ним кислород. Даже небольшие нарушения в работе этой системы могут привести к необратимым последствиям для здоровья. Эти органы и изнашиваются быстрее других: сердце находится в постоянном движении, а сосуды испытывают импульсную нагрузку.

Не подлежит сомнению, что сердцу и сосудам надо помогать. Как? Во-первых, соблюдать режим, есть полезные продукты, отказаться от вредных привычек. А во-вторых, вовремя проходить исследования. Обнаружение проблемы на ранних стадиях, ни для кого не секрет, дает больше шансов на выздоровление. МРТ коронарных сосудов и сердца даст возможность найти все неполадки в системе. А по результатам обследования врач назначит правильное лечение.

Метод МРТ абсолютно безопасен для сердечной деятельности. Магнитное поле безвредно для миокарда, сосудистых стенок, сердечного ритма. После исследования нет никаких остаточных явлений.

Исследование сердца показывает:

  • Изменения в строении сердца и всей коронарной системы;
  • Уменьшение либо увеличение кровотока. Кровоснабжение зависит от приема лекарственных средств, гормональных препаратов, нагрузки, стресса;
  • Стеноз или холестериновые отложения: даже малейшее нарушение пропускной способности артерий ухудшает сердечную деятельность;
  • Изменения в функциях сердечных камер;
  • Патологические изменения миокарда;
  • Нарушения в строении и работе клапанной системы;
  • Образования (доброкачественные и злокачественные);
  • (врожденные или приобретенные);
  • Послеоперационные состояния сосудов и сердца.

Здоровое сердце (слева) и хорошо выявляемая с помощью МРТ (справа)

Сложность в обследовании сердца состоит в том, что орган этот не может быть неподвижным. Дыхание также оказывает влияние на результат сканирования. Чтобы сделать качественные снимки, необходимо использовать томографы повышенной мощности. Поэтому при исследовании сердечнососудистой системы используют аппараты, способные создать напряженность магнитного поля более 1,5 Тесла. Это позволяет сделать снимки срезов не толще 1 мм. А для более четкой картинки исследование может проводиться с контрастированием.

На таких томографах получается трехмерное качественное изображение. Сосуды и окружающие ткани просматриваются на любой глубине и в разнообразных ракурсах. Сердечный ритм и напряженность магнитного поля в современных МРТ-аппаратах синхронизированы. Исследование сосудов осуществляется и в статике, и в динамике.

Абсолютные противопоказания:

  1. Присутствие в теле электронных приборов (ферромагнитных ушных имплантантов, кардиостимуляторов);
  2. Металлические имплантанты, зажимы, скобы;

Относительные противопоказания:

  1. Клаустрофобия;
  2. Послеоперационное состояние, которое требует применения поддерживающей аппаратуры;
  3. Беременность (первый триместр);
  4. Нездоровая мышечная активность.

Диагностика брюшной полости

Обычно для диагностирования патологий органов, находящихся в полости брюшины, назначается не МР-томография, а иные способы исследования. К примеру, компьютерные томографы лучше различают желчный пузырь и кишечник. Фиброгастроскопия хорошо себя зарекомендовала при исследовании желудка. Однако мягкие ткани лучше видит МР-томограф. Поэтому, чтобы уточнить диагноз относительно желчных протоков, сосудов, надпочечников, печени, назначается МРТ. С помощью метода можно выявить точное местоположение органа, его форму и размеры, обнаружить болезненный процесс, а также связь последнего с соседними органами.

Тромбоз вен печени на снимке МРТ

МРТ довольно дорогая процедура, поэтому назначается только в случае необходимости в качестве дополнения к пройденным исследованиям.

Преимущество данного метода заключается в его безопасности. Проведение процедуры без использования рентгеновских лучей позволяет применять ее даже при обследовании беременных. Если же надо провести дополнительное исследование, то процедуру можно повторять без опасения осложнений. Также при изучении состояния сосудов, находящихся в брюшной полости применять контрастное вещество не обязательно, что делает этот метод незаменимым для аллергиков. Конечно, если надо более детально рассмотреть клеточные структуры органов, определить их кровоснабжение, то возможно применение контрастирования. Однако решать это должен только врач.

Что выявляет МР-томография

  • Жировую дистрофию печени, цирроз;
  • Опухоли различной природы;
  • Кровотечения, инфекции, воспаление;
  • Непроходимость желчных протоков;
  • Холестериновые отложения и другие причины нарушения движения крови в сосудах;
  • Накопления жидкости в брюшной полости.

Важно! Пациенту не следует отказываться от дополнительной уточняющей процедуры – МРТ органов брюшной полости, если ее назначил врач.

МР-томография сосудов конечностей

В артериальном и венозном русле нижних конечностей может происходить нарушение кровообращения. Определить степень этого нарушения поможет МРТ сосудов ног. По результатам исследования можно сделать заключение о травмах сосудов, аномалиях в их развитии, болезнях, прогнозировать последующие проявления заболевания и назначить наиболее подходящий способ лечения.

тромбоз сосудов ног на снимке МРТ

Абсолютные и относительные противопоказания при проведении МРТ сосудов ног такие, как и при диагностике других органов (МРТ сосудов почек, брюшной полости, сердца).

Применение МРТ при исследовании коленных суставов

Около 70% всех травм нижних конечностей приходится на коленные суставы. Это может произойти с людьми любого возраста и привести к полной потере работоспособности.

МРТ коленного сустава в настоящее время применяется для уточнения диагноза при следующих травмах:

  • Повреждении связок;
  • Разрыве мениска;
  • Повреждении сухожилий.

МР-томография не только подтверждает ту или иную травму, но и показывает более сложные изменения, происходящие в тканях.

Почему МР-томография?

Наиболее используемыми методами исследования сосудов ног являются компьютерная томография, и МР-томография.

Наиболее безопасными из этих методов являются МРТ и допплерография. Следует отметить высокую информативность как одного, так и другого метода. Однако преимущество МРТ в том, что по результатам исследования пациент и его доктор получают трехмерное, подробное, в деталях изображение всех интересующих элементов.

Если сравнивать МРТ и КТ, то они оба надежны и могут успешно использоваться для постановки правильного диагноза. Основное отличие МРТ от КТ в отсутствии рентгеновского излучения. Поэтому противопоказаний у МРТ гораздо меньше, и метод может быть рекомендован большему кругу пациентов, даже беременным женщинам.

Видео: сравнение МРТ с КТ

Среди многообразия методов диагностики МРТ занимает особое место. Максимум преимуществ и минимум противопоказаний делают его методом выбора. Тем не менее, окончательные выводы по определению должен делать только врач.



Понравилась статья? Поделитесь ей