Контакты

Смысл дезоксирибонуклеиновой бессмыслицы. Активность теломеразы в нормальных и злокачественных клетках. Факультет: общественное здравоохранение

Теломеры представляют собой повторяющуюся последовательность ДНК на концах хромосом. Всякий раз, когда клетка воспроизводится, теломеры становятся короче. В конечном счёте, теломеры изнашиваются, и клетка более не способна делиться и омолаживаться, в результате чего здоровье клетки ухудшается, что увеличивает риск болезни. В итоге клетка погибает.

В 1962 американский учёный Л. Хейфлик произвёл переворот в области биологии клетки, создав концепцию теломер, известную как лимит Хейфлика. По мнению Хейфлика, максимальная (потенциально) продолжительность человеческой жизни составляет сто двадцать лет – это возраст, когда слишком большое количество клеток уже не способно к делению, и организм умирает.

Механизм, посредством которого питательные вещества влияют на длину теломер, заключается в том, что еда оказывает воздействие на теломеразу, энзим, добавляющий теломерные повторы к концам ДНК.

Теломеразе посвящены тысячи исследований. Они известны тем, что поддерживают геномную стабильность, предотвращают нежелательную активацию путей повреждения ДНК и регулируют старение клеток.

В 1984 Элизабет Блэкбёрн, профессор биохимии и биофизики в Калифорнийском университете в Сан-Франциско, обнаружила, что энзим теломераза способен удлинять теломеры, синтезируя ДНК из РНК-праймера. В 2009 Блэкбёрн, Кэрол Грейдер и Джек Шостак получили Нобелевскую премию в области физиологии и медицины за открытие того, как теломеры и энзим теломераза защищают хромосомы.

Вполне возможно, что знание о теломерах даст нам возможность значительно увеличить продолжительности жизни. Естественно, исследователи занимаются разработкой фармацевтических средств такого рода, но существуют достаточные свидетельства того, что простой образ жизни и правильное питание тоже эффективны.

Это радует, поскольку короткие теломеры суть фактор риска – они приводят не только к смерти, но и к многочисленным заболеваниям.

Так, укорачивание теломер связывают с заболеваниями, список которых приведён ниже. Исследования на животных показали, что многие заболевания могут быть устранены благодаря восстановлению функции теломеразы. Это и пониженная сопротивляемость иммунной системы инфекциям, и диабет второго типа, и атеросклеротическое повреждение, а также нейродегенеративные болезни, тестикулярная, селезёночная, кишечная атрофия.

Результаты всё большего числа исследований показывают, что определённые нутриенты играют значительную роль в деле защиты длины теломер и оказывают значительное влияние на продолжительность жизни, в их числе – железо, жиры омега-3, а также витамины E и C, витамин D3, цинк, витамин B12.

Ниже приведено описание некоторых питательных веществ такого рода.

Астаксантин

Астаксантин обладает прекрасным противовоспалительным действием и эффективно защищает ДНК. Исследования показали, что он способен защищать ДНК от повреждения, вызванного гамма радиацией. Астаксантин обладает множеством уникальных черт, которые делают его выдающимся соединением.

Например, это самый мощный окислитель-каротиноид, способный «вымывать» свободные радикалы: астаксантин в 65 раз эффективнее витамина C, в 54 раза – бета-каротина и в 14 раз – витамина E. Он в 550 раз более эффективен, нежели витамин E, и в 11 раз более эффективен, нежели бета-каротин, в деле нейтрализации синглетного кислорода.

Астаксантин преодолевает и гемоэнцефалический, и гематоретинальный барьер (бета-каротин и каротиноид ликопин на это не способны), благодаря чему мозг, глаза и центральная нервная система получают антиокислительную и антивоспалительную защиту.

Другое свойство, отличающее астаксантин от иных каротиноидов, выражается в том, что он не может действовать как проокислитель. Многие антиоксиданты действуют как прооксиданты (т. е., они начинают окислять, вместо того, чтобы противодействовать окислению). Однако астаксантин, даже в больших количествах, не действует как окислитель.

Наконец, одно из самых важных свойств астаксантина – его уникальная способность защищать всю клетку от разрушения: как водорастворимую, так и жирорастворимую её части. Другие антиоксиданты влияют лишь либо на одну, либо на другую часть. Уникальные физические характеристики астаксантина позволяют ему находиться в клеточной мембране, защищая также внутреннюю область клетки.

Прекрасным источником астаксантина является микроскопическая водоросль Haematococcus pluvialis, растущая на Шведском архипелаге. Кроме того, астаксантин содержит старая добрая черника.


Убихинол

Убихинол - восстановленная форма убихинона. По сути, убихинол – это убихинон, присоединивший к себе молекулу водорода. Содержится в брокколи, петрушке и апельсинах.

Ферментированные продукты/пробиотики

Совершенно очевидно, что диета, состоящая, преимущественно, из переработанных продуктов, сокращает продолжительность жизни. Исследователи считают, что в будущих поколениях возможны множественные генетические мутации и функциональные расстройства, приводящие к болезням – по той причине, что нынешнее поколение активно потребляет искусственные и переработанные продукты.

Отчасти, проблема заключается в том, что переработанные продукты, изобилующие сахаром и химическими веществами, эффективно уничтожают кишечную микрофлору. Микрофлора влияет на иммунную систему, которая, является естественной защитной системой тела. Антибиотики, стресс, искусственные подсластители, хлорированная вода и многие другие явления также уменьшают объём пробиотиков в кишечнике, что предрасполагает организм к болезням и преждевременной старости. В идеале, рацион должен включать традиционно культивируемые и ферментированные продукты.

Витамин K2

Этот витамин вполне может быть «ещё одним витамином D», поскольку исследования показывают многочисленные блага этого витамина для здоровья. Большинство людей получает адекватное количество витамина K2 (поскольку он синтезируется самим организмом в тонком кишечнике), которое позволяет поддерживать коагуляцию крови на адекватном уровне, но этого количества не достаточно, чтобы защитить организм от серьёзных проблем со здоровьем. Например, проведённые в последние годы исследования показывают, что витамин K2 может защищать организм от рака предстательной железы. Витамин K2 также благотворен для здоровья сердца. Содержится в молоке, сое (в больших количествах – в натто).

Магний

Магний играет важную роль в деле воспроизводства ДНК, его восстановлении и синтезе рибонуклеиновой кислоты. Долгосрочный дефицит магния приводит к сокращению теломер в телах крыс и клеточной культуре. Недостаток ионов магния негативно влияет на здоровье генов. Нехватка магния понижает способность тела восстанавливать повреждённую ДНК и вызывает в хромосомах аномалии. В целом, магний влияет на длину теломер, поскольку связан со здоровьем ДНК и её способностью восстанавливаться, а также повышает сопротивляемость организма окислительному стрессу и воспалению. Содержится в шпинате, спарже, пшеничных отрубях, орехах и семечках, фасоли, зелёных яблоках и салате, в сладком перце.

Полифенолы

Полифенолы – мощные антиокислители, способные замедлять процесс.

В 2009 году Нобелевская премия по физиологии и медицине вручена трём американским учёным, разрешившим важную биологическую проблему: как хромосомы при делении клетки копируются полностью , без того, чтобы ДНК на их кончиках укорачивалась? В результате их исследований стало известно, что «защитным колпачком» для хромосом служат особым образом устроенные окончания ДНК - теломеры , достройкой которых занимается специальный фермент - теломераза .

Длинная нитеобразная молекула ДНК - главный компонент хромосом, несущий генетическую информацию, - с обоих концов закрыта своего рода «заглушками» - теломерами . Теломеры представляют собой участки ДНК с уникальной последовательностью и защищают хромосомы от деградации. Это открытие принадлежит двум лауреатам Нобелевской премии по физиологии и медицине за 2009 г. - Элизабет Блэкберн (Elizabeth Blackburn ), уроженке США и в настоящее время сотруднице Университета Калифорнии (Сан-Франциско, США), и Джеку Шостаку (Jack Szostak ), профессору . Элизабет Блэкберн в сотрудничестве с третьим лауреатом премии этого года - Кэрол Грейдер (Carol Greider ), сотрудницей Университета Джона Хопкинса , - открыла в 1984 году фермент теломеразу , синтезирующий ДНК теломер (и тем самым достраивая их после неизбежного при каждом копировании хромосомы укорачивания). Таким образом, исследования, отмеченные премией в этом году (около 975 тысяч евро, поделенные поровну между лауреатами), объясняют, как теломеры защищают кончики хромосом, и как теломераза синтезирует теломеры.

Давно отмечено, что старение клетки сопровождается укорачиванием теломер. И, наоборот, в клетках с высокой активностью теломеразы, достраивающей теломеры, длина последних остается неизменной, и старение не наступает. Это, кстати, относится и к «вечно молодым» раковым клеткам, в которых механизм естественного ограничения роста не действует. (А для некоторых наследственных заболеваний характерна дефектная теломераза, что приводит к преждевременному клеточному старению.) Присуждение за работы в этой области Нобелевской премии является признанием фундаментального значения этих механизмов в живой клетке и огромного прикладного потенциала, заложенного в отмеченных работах.

Таинственная теломера

В хромосомах содержится наш геном, а «физическим» носителем генетической информации являются молекулы ДНК. Ещё в 1930 году Герман Мёллер (лауреат Нобелевской премии по физиологии и медицине 1946 года «за открытие появления мутаций под влиянием рентгеновского облучения») и Барбара Мак-Клинток (лауреат Нобелевской премии в той же категории 1983 года «за открытие транспозирующих генетических систем») обнаружили, что структуры на концах хромосом - так называемые теломеры - предотвращали слипание хромосом между собой. Было высказано предположение, что теломеры выполняют защитную функцию, но механизм этого явления оставался совершенно неизвестным.

Позже, в 1950-х, когда уже было в общих чертах понятно, как копируются гены, возникла другая проблема. При делении клетки основание за основанием дублируется и вся клеточная ДНК, - при помощи ферментов ДНК-полимераз. Однако для одной из комплементарных цепей возникает проблема: самый конец молекулы не может быть скопирован (дело тут в «посадочном» сайте ДНК-полимеразы). Вследствие этого, хромосома должна укорачиваться при каждом делении клетки, - хотя на самом деле этого не происходит (на рисунке: 1).

И та, и другая проблема были со временем решены, за что в этом году и вручают премию.

ДНК теломер защищает хромосомы

Ещё в начале своей научной карьеры Элизабет Блэкберн занималась картированием последовательностей ДНК на примере одноклеточного жгутикового организма тетрахимены (Tetrahymena ). На концах хромосомы она обнаружила повторяющиеся последовательности ДНК вида CCCCAA, функция которых была на тот момент совершенно неизвестна. В то же время Джек Шостак обнаружил, что линейные молекулы ДНК (что-то вроде минихромосомы), введённые в клетку дрожжей, очень быстро деградируют.

Исследователи встретились на конференции в 1980 г., где Блэкберн докладывала свои результаты, заинтересовавшие Шостака. Они решили провести совместный эксперимент, в основе которого было «растворение барьеров» между двумя эволюционно весьма далёкими видами (на рисунке: 2). Блэкберн выделила из ДНК тетрахимены последовательности CCCCAA, а Шостак присоединил их к минихромосомам, помещённым затем в клетки дрожжей. Результат, опубликованный в 1982 году, превзошёл ожидания: теломерные последовательности действительно защищали ДНК от деградации! Это явление наглядно продемонстрировало существование неизвестного ранее клеточного механизма, регулирующего процессы старения в живой клетке. Позже подтвердилось наличие теломер в подавляющем большинстве растений и животных - от амёбы до человека.

Фермент, синтезирующий теломеры

В 1980-х аспирантка Кэрол Грейдер работала под началом Элизабет Блэкберн; они начали изучение синтеза теломер, за который должен был отвечать неизвестный на ту пору фермент. В канун рождества 1984 года Грейдер зарегистрировала искомую активность в клеточном экстракте. Грейдер и Блэкберн выделили и очистили фермент, получивший название теломераза , и показали, что в его состав входит не только белок, но и РНК (на рисунке: 3). Молекула РНК содержит «ту самую» последовательность CCCCAA, используемую в качестве «шаблона» для достройки теломер, в то время как ферментативная активность (типа обратной транскриптазы ) принадлежит белковой части фермента. Теломераза «наращивает» ДНК теломеры, обеспечивая «посадочное место» для ДНК-полимеразы, достаточное для копирования хромосомы без «краевых эффектов» (то есть, без потерь генетической информации).

Теломераза отсрочивает старение клетки

Учёные начали активно заниматься исследованием роли теломер в клетке. Лаборатория Шостака установила, что дрожжевая культура с мутацией, приводящей к постепенному укорачиванию теломер, развивается очень медленно и, в конце концов, вообще прекращает рост. Сотрудники Блэкберн показали, что в тетрахимене с мутацией в РНК теломеразы наблюдается в точности такой же эффект, который можно охарактеризовать фразой «преждевременное старение» . (По сравнению с этими примерами, «нормальная» теломераза предотвращает укорачивание теломер и задерживает наступление старости.) Позже в группе Грейдер открыли, что те же механизмы работают и в клетках человека. Многочисленные работы в этой области помогли установить, что теломера координирует вокруг своей ДНК белковые частицы, образующие защитный «колпачок» для кончиков молекулы ДНК.

Части головоломки: старение, рак и стволовые клетки

Описанные открытия имели самый сильный резонанс в научном сообществе. Многие учёные заявляли, что укорачивание теломер является универсальным механизмом не только клеточного старения, но и старости всего организма в целом. Однако со временем стало понятно, что теломерная теория не является пресловутым «молодильным яблоком», поскольку процесс старения на самом деле чрезвычайно сложен и многосторонен, и не сводится исключительно к «подрезанию» теломер. Интенсивные исследования в этой области продолжаются и сегодня.

Большинство клеток делится не так уж часто, так что их хромосомы не находятся в зоне риска чрезмерного укорачивания и, в общем-то, не требуют высокой теломеразной активности. Другое дело - раковые клетки: они обладают способностью делиться бесконтрольно и бесконечно, как бы не зная о бедах с укорачиванием теломер. Оказалось, что в опухолевых клетках очень высокая активность теломеразы, что и защищает их от подобного укорачивания и придаёт потенциал к неограниченному делению и росту. В настоящее время существует подход к лечению рака, использующий концепцию подавления теломеразной активности в раковых клетках, что привело бы к естественному исчезновению точек бесконтрольного деления. Некоторые средства с антителомеразным действием уже проходят клинические испытания.

Ряд наследственных заболеваний характеризуется сниженной теломеразной активностью, - например, апластическая анемия, при которой из-за низкого темпа деления стволовых клеток в костном мозге развивается анемия. К этой же группе относится ряд заболеваний кожи и лёгких.

Открытия, сделанные Блэкберн, Грейдер и Шостаком, открыли новое измерение в понимании клеточных механизмов, и, несомненно, имеют огромное практическое применение - хотя бы в лечении перечисленных заболеваний, а может быть (когда-нибудь) - и в обретении если не вечной, то хотя бы более длительной жизни.

На тему: «Теломеры и теломераза».

Выполнила:

Жумаханова Адина

Факультет: общественное здравоохранение

Группа:

Курс:1

Алматы 2012

Введение…………………………………………………………………………………...3

1. Определение теломеры и теломеразы …………………………………………..…4-9

1.1.Функции теломер………………………………………………………………....5

1.2. Проблема концевой недорепликации ДНК………………………………….…6
2. Теломеразная активность у млекопитающих: механизмы регуляции…………..9-10
3. Теломераза, рак и старение………………………………………………….……11-13
Заключение…………………………………………………………………………...…..14
Литература……………………………………………………………………..…………15

Приложения…………………………………………………………………………..16-17

Введение.

Работа посвящена изучению строения и функций теломер и теломеразы, изучению их влияния на клеточное строение, экспрессии теломераз в нормальных клетках человека, а также изучению теломеразной активности и длины теломер в опухолевых клетках.

Актуальность работы заключается в изучении влияния фермента теломеразы на развитие опухолевых клеток, изучении возможностях процесса беспрерывного деления благодаря деятельности теломеразы.

Также актуальность работы заключается в изучении процессов старения как организма в целом, так и клетки. Работа дает возможность понять как происходит недорепликация концевых участков ДНК, какие процессы происходят в клетке для её деления, какие ферменты и белки участвуют в этих процессах.

Целью работы является изучение механизмов, сопровождающих деление клетки, изучение влияния теломеразы на внутриклеточные процессы и связь между теломеразой, раковыми клетками и старением клетки.

Теломеры и теломераза

Теломеры (от др.греч. τέλος - конец и μέρος - часть) - концевые участки хромосом. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию. У большинства организмов теломерная ДНК представлена многочисленными короткими повторами. Их синтез осуществляется необычным РНК-содержащим ферментом теломеразой.

Существование специальных структур на концах хромосом было постулировано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. Г. Мёллер предложил называть их теломерами.



У большинства эукариот теломеры состоят из специализированной линейной хромосомной ДНК, состоящей из коротких тандемных повторов. В теломерных участках хромосом ДНК вместе со специфически связывающимися с теломерными ДНК-повторами белками образует нуклеопротеидный комплекс - конститутивный (структурный) теломерный гетерохроматин. Теломерные повторы - весьма консервативные последовательности, например повторы всех позвоночных состоят из шести нуклеотидов TTAGGG, повторы всех насекомых - TTAGG, повторы большинства растений - TTTAGGG.

В последующие годы выяснилось, что теломеры не только предотвращают деградацию и слияние хромосом (и тем самым поддерживают целостность генома хозяйской клетки), но и, по-видимому, ответственны за прикрепление хромосом к специальной внутриядерной структуре (своеобразному скелету клеточного ядра), называемой ядерным матриксом. Таким образом, теломеры играют важную роль в создании специфической архитектуры и внутренней упорядоченности клеточного ядра.

У дрожжей повторяющиеся блоки в теломерной ДНК заметно длиннее, чем у простейших, и зачастую не столь регулярные. Каково же было удивление ученых, когда оказалось, что теломерная ДНК человека построена из TTAGGG-блоков, то есть отличается от простейших всего лишь одной буквой в повторе. Более того, из TTAGGG-блоков построены теломерные ДНК (вернее, их G-богатые цепи) всех млекопитающих, рептилий, амфибий, птиц и рыб. Столь же универсален теломерный ДНК-повтор у растений: не только у всех наземных растений, но даже у их весьма отдаленных родственников - морских водорослей он представлен последовательностью TTTAGGG. Впрочем, удивляться здесь особенно нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит генов), а у всех организмов теломеры выполняют универсальные функции.

1.1.Функции теломер:

1. Участвуют в фиксации хромосом к ядерному матриксу, обеспечивая правильную ориентацию хромосом в ядре.

2.Соединяют друг с другом концы сестринских хроматид, образующихся в хромосоме после S-фазы. Структура теломер однако допускает расхождение хроматид в анафазе. Мутация гена теломеразной РНК с изменением нуклеотидной последовательности теломер приводит к нерасхождению хроматид.

3. Предохраняют от недорепликации генетические значимые отделы ДНК в отсутствие теломераз.

4.Стабилизируют в присутствии теломераз концы разорванных хромосом путем добавления к ним теломер с возможностью функционирования. Примером является восстановление функции гена α – талассемией путем добавления теломер к точкам разрыва длинного плеча 16 хромосомы.

5. Влияют на активность генов. Гены, расположенные рядом с теломерами, функционально менее активны(репрессированы). Данный эффект носит название транскрипционного молчания или сайленсинга. Укорочение теломер приводит к отмене эффекта положения генов с активацией прителомерных генов. В основе сайленсинга может лежать действие белков(Rap1, TRF1), взаимодействующих с теломерами.

6. Выступают в качестве регулятора количества клеточных делений. Каждое деление клетки сопровождается укорочением теломеры на 50-65 пар нуклеотидов. В отсутствие теломеразной активности количество делений клетки будет определяться протяженностью оставшихся теломер.

1.2. КОРОТКИЕ ТЕЛОМЕРЫ И РАЗВИТИЕ ЗЛОКАЧЕСТВЕННЫХ ЗАБОЛЕВАНИЙ

Существует множество доказательств того, что укорочение теломер ассоциировано с развитием рака и, возможно, является предрасполагающим фактором для развития ряда онкологических заболеваний. Примером тому служат врожденные заболевания, в основе которых лежит первичная дисфункция теломеразы и, в частности, врожденный дискератоз. Врожденный дискератоз был первым идентифицированным у человека генетическим заболеванием, причиной которого является нарушение системы поддержания длины теломер. Это заболевание характеризуется гиперпигментацией кожи, ороговением эпителия, дистрофией ногтей и прогрессивной апластической анемией. У пациентов с врожденным дискератозом в 1000 раз повышен риск развития рака языка и примерно в 200 раз - риск развития острой миелоидной лейкемии . При апластической анемии, не связанной с дискератозом, для пациентов с наиболее короткими теломерами (при отсутствии мутаций) риск злокачественной трансформации заболевания в миелодисплазию или лейкемию повышен в 4-5 раз.

Наряду с другими изменениями, лишенные теломер концевые участки хромосом выявляются в культурах клеток костного мозга пациентов за годы до появления клинических симптомов злокачественных заболеваний. Так короткие теломеры лейкоцитов являются прогностическим фактором развития рака при синдроме Беретта (метаплазия слизистой оболочки и стриктуры пищевода в результате пищеводного рефлюкса) и язвенном колите .

Сотрудники Инсбрукского медицинского университета наблюдали за 787 участниками итальянского проспективного исследования Bruneck с 1995 по 2005 год. Возраст добровольцев составлял от 40 до 79 лет. В начале исследования у них определили длину теломер в лейкоцитах капиллярной крови. На тот момент у всех участников признаков рака обнаружено не было. За годы исследования у 11,7% добровольцев появилось какое-либо злокачественное новообразование. Рак кожи, кроме меланомы, не учитывался. Средняя длина теломер у пациентов с раком оказалась значительно меньше, чем у остальных участников исследования. После введения поправки на другие факторы риска оказалось, что по сравнению с теми, у кого длина теломер максимальна, добровольцы с самыми короткими теломерами в 3 раза больше рискуют заболеть раком и в 11 раз больше - умереть от него в 10-летний период. У участников исследования со средней длиной теломер риск рака оказался вдвое выше, чем у участников с наиболее длинными теломерами. При этом более короткие теломеры были чаще связаны с наиболее злокачественными опухолями, такими как рак желудка, легких и яичников . В чем же состоит взаимосвязь между существованием коротких теломер в клетке и развитием рака?

1.3. ПРОЦЕССЫ СТАРЕНИЯ И АПОПТОЗА

Одна из основных функций теломер - это защита генетической информации хромосом при делении клеток. Критически короткие теломеры неспособны защитить хромосомы от повреж¬дения при митозе (деление клетки). Их появление является сигналом для выхода клеток из митотического цикла. Критическим укорочением теломеры считается величина 3000-5000 пар нуклеотидов или менее 2 кb. Если этой величины достигает хотя бы одна теломера, то в клетке происходит резкое изменение метаболизма, и в первую очередь нарушение репликации ДНК, которые запускают механизмы клеточного сенесенса (репликативное старение) и апоптоза (гибель, разрушение клетки). Исключением из этого правила являются так называемые «иммортальные» (бессмертные) клетки, к которым относятся половые клетки, стволовые тотипотентные (способные дифференцироваться в любые клетки организма) клетки, а также клетки злокачественных опухолей, способные делиться неограниченное число раз.

В нормальной соматической клетке процесс сенесенса клетки в конечном итоге должен закончиться апоптозом - апофеозом или самоубийством нежизнеспособной клетки. Это генетически запрограммированный процесс, основные моменты которого упрощенно можно представить так: отсутствие теломеры на конце хромосомы останавливает митоз в точках G1 и G2. Остановка митоза в клетках, достигших лимита Хейфлика, по принципу обратной связи вызывает активацию гена р53, ответственного за выработку белка р53, индуцирующего апоптоз. В результате стареющая клетка прекращает свое существование. Старение и апоптоз- два взаимосвязанных процесса, которые служат для человека мощным барьером на пути развития рака. Однако апоптоз может происходить в стареющих клетках не сразу. Период от критического укорочения теломер до гибели клетки может длиться в течение нескольких месяцев и даже лет. Сравнительно небольшая длина теломер у большинства раковых клеток наводит на мысль о том, что они происходят из клеток, достигших предкризисного состояния. Уже известно, что в подавляющем большинстве случаев раковое перерождение происходит тогда, когда клетка не переходит в стадию репликативного старения или в клетке происходит нарушение течения самой стадии репликативного старения.

Профессор Ян Карлседер, и его команда из Инсбрукской лаборатории молекулярной и клеточной биологии считают, что: «Цепь, контролирующая остановку роста в G1-фазе, обычно изменена в раковых клетках, позволяя им делиться, несмотря на укороченные теломеры, что может привести к нестабильности генома, наблюдаемой в злокачественных клетках» . Специалисты Института биологических исследований Дж. Солка в Ла-Ойе (Сан-Диего, США) исследовали молекулярный механизм активации гена р53, который обычно защищает генетический материал клетки и подавляет опухоли, как ключевой фактор при реакции на снятие защиты теломер. Когда клетки теряют функцию p53, гена в центре цепи ДНК, нарушается механизм остановки роста клеток в фазе G1, важном моменте в клеточном цикле для ремонта повреждений ДНК или, если повреждение не может быть восстановлено, ген программирует клетки на уничтожение. Чаще всего, p53 исчезает в раковых клетках из-за мутации гена или деактивации функции белка p53 через инфекции от вызывающих рак вирусов. Клетки без функционального р53 способны делиться с незащищёнными теломерами, несмотря на чрезмерное укорачивание теломер, вплоть до их полного исчезновения, что вызывает нестабильность генома. При нестабильности генома высока вероятность возникновения спонтанных хромосомных аберраций, начиная от количественных изменений и заканчивая структурными аномалиями: транслокациями, инсерциями, делециями и ассоциированными с теломерами концевыми слияниями хромосом. Концевые слияния хромосом происходят за счет того, что сверхкороткие теломеры воспринимаются клеткой, как разрывы хромосом. Такие разрывы “чинятся” путем их соединения, т.е. происходят теломерные слияния. В результате образуются хромосомы, имеющие по две центромеры. При прохождении через митоз дицентрик, с большой вероятностью, образует хромосомный мост, который разрешается случайным разрывом хромосомы. Образуются две клетки: одна с нехваткой генов, другая с лишними копиями и с хромосомным разрывом. Клетка с нехваткой генов обычно погибает, а с лишними копиями и хромосомным разрывом продолжает размножаться. Последовательность событий “слияние-мост- разрыв” многократно повторяется, генерируя на каждом этапе новый генотип, состоящий из базового набора генов и некоторого меняющегося довеска. На каком-то этапе хромосомный разрыв может “залечиться” и превратиться в теломеру. Процесс “слияние-мост-разрыв” приводит к многократному увеличению скорости изменчивости клеток и появлению «дефектных» клеток.

Однако не всякая дефектная клетка сразу становится злокачественной. Раковое перерождение клетки в большинстве случаев многоступенчатый процесс, затрагивающий многочисленные хромосомные перестройки. В клетках опухолей человека подчас находят более 10 мутаций.

Необходимо отметить, что большинство дефектных клеток, в конце концов, погибают от апотоза или уничтожаются клетками иммунной системы. В противном случае была бы слишком высока вероятность того, что все человечество погибло бы от рака. Апоптоз охарактеризовал себя как отличный подавитель роста раковых клеток. Однако у части злокачественных клеток в результате случайных мутаций может активироваться постоянная экспрессия генов теломеразы, которая поддерживает длину теломер на уровне, необходимом и достаточном для их функционирования. Это характерный путь для быстрой пролиферации 85% злокачественных опухолей.

1.4. СТРУКТУРА ТЕЛОМЕРАЗЫ

Структура теломеразы еще не полностью изучена. Дело в том, что содержание фермента в клетке чрезвычайно низкое, имеются большие трудности получения ее компонентов в растворимой форме и в достаточном количестве и др. Но уже точно известны два основных компонента, составляющие коровый комплекс (сердце) теломеразы: это теломеразная обратная транскриптаза - TERT(наиболее важный домен-hTERT каталитическая субъединица) и TER- специальная теломеразная РНК. Предположительно, теломераза содержит и другие структурные комплексы, которые помогают ей работать в клетке: субъединица, отвечающая за поиск и связывание 3’-конца хромосомы (якорная функция), субъединица, ответственная за транслокацию, субъединицы, связывающие продукт реакции (однотяжевую ДНК), белковая субъединица с нуклеазной активностью, которая, по-видимому, отщепляет от 3’-конца теломерной ДНК один за другим несколько нуклеотидов до тех пор, пока на этом конце не окажется последовательность, комплементарная нужному участку матричного сегмента теломеразной РНК и др.

1.5. ФУНКЦИИ ТЕЛОМЕРАЗЫ

Основная и наиболее изученная функция теломеразы - наращивание теломерных районов хромосом, и в частности, 3’-конца хромосомной ДНК. Последние работы показали, что коровый комплекс теломеразы может влиять на рост клеток, их фенотип, независимо от эффекта на длину теломер. Нобелевский лауреат 2009 года Элизабет Блэкберн предложила следующее объяснение наблюдаемым явлениям: теломераза, помимо удлинения концов теломер, проявляет защитные функции на теломере . К настоящему времени появилось уже довольно много работ, свидетельствующих о том, что не столько укорочение теломер приводит к сенессенсу, сколько нарушение их структуры. Тем самым теломераза, не только препятствует укорочению теломер, но и защищает их структуру. Интересен тот факт, что отдельные структурные элементы теломеразы имеют свое функциональное предназначение в клетке. Оказалось, что непосредственно TERT участвует в транскрипции генов «Wnt-?-catenin» сигнального пути, который стимулирует пролиферацию эмбриональных и стволовых клеток. Такая функция TERT представляет собой, по сути, координацию аппарата поддержания теломер в делящихся клетках с помощью теломеразы с экспрессией генов, необходимых для пролиферации.

1.6. АКТИВНОСТЬ ТЕЛОМЕРАЗЫ В НОРМАЛЬНЫХ И ЗЛОКАЧЕСТВЕННЫХ КЛЕТКАХ

Все клетки человека в раннем эмбриогенезе обладают теломеразной активностью, которая по мере развития организма выключается во все большей доле клеток. К моменту рождения в подавляющем большинстве клеток человеческого организма происходит очень надежная репрессия теломеразы за счет подавления экспрессии гена ее каталитической субъединицы (обратной транскриптазы). Исключением являются клетки организма, которым суждено много пролиферировать Они сохраняют ограниченную, временно индуцируемую теломеразную активность. Наличие небольшой теломеразной активности дает возможность пролиферирующим клеткам с течением времени не подвергаться большой изменчивости. У здорового человека активность этого фермента можно выявить на сравнительно низком, но детектируемом уровне в стволовых, половых клетках, в слизистых клетках кишечника, в лимфоцитах периферической крови (ПК) и тимуса (Osterhage J.L., 2009). Установлено, что экспрессия теломеразы в лимфоцитах строго контролируется в течение их развития, дифференцировки и активации . Предполагается, что активность теломеразы усиливается на короткий срок в период интенсивной пролиферации (например, после встречи предшественника В-лимфоцита с антигеном). В результате стимуляции зрелые лимфоциты становятся способны экспрессировать теломеразу на довольно высоком уровне, причем после любой повторной стимуляции экспрессия теломеразы возрастает, но ее уровень уже не достигает уровня ответа на первичный стимул . Ферментативная активность теломеразы возрастает в основном за счет фосфорилирования TERT, вызывающего изменение локализации белка в клетке.

Несмотря на репрессию hTERT, другие составляющие теломеразы, включая теломеразную РНК, образуются в соматических клетках, хотя и в меньших количествах, чем в их “бессмертных” прародителях, но постоянно (или, как говорят, конститутивно). Открытие этого важного факта Дж. Шеем, В. Райтом и их сотрудниками и стало основой для сенсационной работы по преодолению “лимита Хейфлика”. В нормальные соматические клетки были внесены гены теломеразной обратной транскриптазы с помощью специальных векторов, сконструированных из вирусных ДНК. В практике клеточных технологий принято влиять на экспрессию генов через геномы вирусов, с определенными участками ДНК, которые внедряются в клетку-хозяина и быстро там размножаются. Результаты их экспериментов можно суммировать кратко: клетки, в которых теломераза поддерживала длину теломер на уровне, характерном для молодых клеток, продолжали делиться тогда, как контрольные клетки (без теломеразы) дряхлели и умирали.

Известно, что клетки большинства исследованных на сегодня раковых опухолей характеризуются достаточно высокой активностью теломеразы, которая поддерживает длину теломер на постоянном уровне. Этот уровень заметно ниже, чем, например, у эмбриональных клеток, но он достаточен, чтобы обеспечить опухолевым клеткам возможность безграничной пролиферации, что в свою очередь предоставляет им время и, соответственно, возможность изменяться, выживать и захватывать новые ниши в организме. Если бы в процессе канцерогенеза не происходило активации теломеразы, то клетки, в большинстве случаев, не смогли бы дожить до злокачественных стадий, и не было бы абсолютного большинства раковых опухолей. К, сожалению, на сегодняшний день нет объяснения тому факту, что при различных формах рака теломераза может активироваться как на ранних, так и на поздних стадиях. Так, при миелолекозе активность теломеразы определяется на ранних стадиях, а при раке почки или менингеоме активация теломеразы происходит уже в клетках сформировавшейся опухоли.

Существует гипотеза, у которой немало сторонников, предполагающая, что потеря теломеразной активности соматическими клетками современных организмов есть благоприобретенное в процессе эволюции свойство, уберегающее их от злокачественного перерождения. Но этот механизм, по-видимому, не единственный. Было установлено, что в 15% всех опухолей, злокачественные клетки поддерживают длину теломер на должном уровне в отсутствии теломеразы. Таким образом, в этих злокачественных клетках действует другой (не теломеразный, а скорее рекомбинантный) ALT механизм «альтернативного удлинения теломер», (аббревиатура от «Alternative Lengthening of Telomeres»). Во всех ALT- индуцированных опухолях высоко содержание APB - ALT-ассоциированных ядерных белков. APB-структуры хорошо видны при флуоресцентной микроскопии клеток, что использовалось для идентификации ALT- опухолей (так как, у нормальных клеток эти структуры отсутствуют). Инн Чанг и Карстен Риппе из Онкологического центра Германии в ходе совместного исследования с Генрихом Леонардом из Мюнхенского университета Людвига- Максимилиана применили новый подход к изучению APB. Им удалось искусственно создать APB-белки в живых клетках, «привязав» к теломерам белки промиелоцитарной лейкемии (promyeloeytie leukaemia) - PML. Таким образом, ученым удалось впервые доказать, что APB удлиняют теломеры, тем самым продлевая жизнь раковых клеток без теломеразы .

Однако сама по себе активация теломеразы в нормальных клетках не приводит к раковому перерождению.

В опытах Дж. Шеея, В. Райта (1998), Bodnar (1997), White (2000), Hannon et al. (1999; 2000), Franzese et al. (2001), and Yudoh et al. (2001) активность теломеразы обычно увеличивалась благодаря сверхэкспрессии hTRT или экспрессии белков, которые являются промежуточными компонентами теломеразы . Их результаты не выявили каких-либо нарушений в регуляции размножения или озлокачествления теломеризованых клеток. Более того, в последнее время появились данные о том, что, просто активации теломеразы недостаточно для иммортализации разных клонов клеток. В работах профессора Кионо с соавторами, введение каталитического компонента теломеразы hTERT или теломеразной активности с помощью онкобелка вируса папилломы человека E7 в кератиноциты или клетки эпителия человека не приводило к их полной иммортализации. Она наступала лишь при дополнительном торможении определенных онкогенов. Причем, для разных типов клеток требуется, по-видимому, инактивация разных супрессоров [ Wynford-Thomas, et all. 1997 ]. Так, в человеческих кератиноцитах и эпителиоцитах молочной железы иммортализация наблюдается при трансдукции TERT и одновременной инактивации белков либо pRb , либо p16INK4a , тогда как элиминация р53 или p19ARF не вызывает такого эффекта [ Kiyono, et all. 1998]

Эти научные факты еще раз подчеркивают, что экзогенная стимуляция активности теломеразы не вызывает в нормальных клетках ракового перерождения, и что особенно важно изолированная экспрессия гена теломеразы не ведет к иммортализации раковых клеток.

1.7. ИНГИБИРОВАНИЕ ТЕЛОМЕРАЗЫ КАК МЕТОД БОРЬБЫ С РАКОМ

Выше уже говорилось о том, что активность теломеразы повышена во многих злокачественных клетках и клеточных линиях. Это позволило искать пути борьбы с раковыми клетками через ингибирование теломеразы. Пока большинство работ связано с испытанием ингибиторов обратных транскриптаз (каталитических субъединиц теломераз). Однако проведенные исследования по эффективности и безопасности данного класса препаратов неоднозначны. По мнению профессора Егорова Е.Е., антираковая терапия с помощью подавления теломеразы является малоэффективной, потому, что в большинстве случаев, реактивация теломеразы при канцерогенезе происходит в процессе выхода клеток из состояния кризиса, когда наблюдается многократное повышение генетической изменчивости. Поскольку эти клетки попали в состояние кризиса, то в них разрушены или нейтрализованы механизмы репликативного старения. Поэтому подавление теломеразы в опухолевых клетках человека возвращает их в состояние кризиса, но не вызывает репликативного старения и следующего за ним апоптоза. А это значит, что снова будет происходить чрезмерное увеличение генетической нестабильности. В отличие от кризиса в процессе становления опухоли, этот кризис будет захватывать существенно большее число клеток. Эффект после подавления теломеразы наступает с задержкой, необходимой для укорачивания теломер вследствие недорепликации. Время этой задержки составляет десятки удвоений популяции, что равноценно десяткам дней. Поэтому, несмотря на то, что большинство клеток все же будет погибать, довольно быстро возникнут клетки, устойчивые к предложенной терапии. Кроме того, проблема данного класса препаратов состоит в их выраженной токсичности для нормальных клеток. И потому более перспективными являются работы, в которых описано избирательное подавление теломеразной РНК, так как действие искомого ингибитора должно быть направлено именно на теломеразную ДНК-синтезирующую активность .

Несомненно, что изучение путей ингибирования теломеразы актуально для снижения смертности от рака, однако изучение путей активации теломеразы представляется не менее важным направлением для профилактики рака, особенно у лиц пожилого возраста.

2. АКТИВАТОР ТЕЛОМЕРАЗЫ ТА-65 И КАНЦЕРОГЕНЕЗ

В процессе старения человека происходит гибель клеток организма, которая не может быть восполнена регенерацией. Со временем потеря клеток приводит к ослаблению функций органов и тканей, уменьшению их надежности, развитию болезней, связанных со старением, и в итоге к гибели организма. По данным Американского общества рака, 78% всех случаев рака диагностируют у лиц старше пятидесяти семи лет. Риск возникновения рака возникает тогда, когда более выражены признаки клеточного старения, что наиболее характерно для пожилых людей. Современный образ жизни, стресс, злоупотребление лекарствами приводят к недостатку отдельных теломеразных компонентов, и к более раннему фенотипическому старению с потерей функции на клеточном и системном уровне. Этот факт заставил исследователей искать пути продления жизни клетки через активацию теломеразы.

На сегодняшний день единственным биологическим комплексом с доказанным эффектом снижения процента критически коротких теломер в клетке, является ТА-65. Его действие направлено на индукцию активности теломеразы, которая способствует добавлению теломерных повторов, прежде всего, к коротким теломерам, тем самым омолаживая стареющие клетки и наделяя их способностью пролиферировать.

Потенциальный терапевтический эффект ТА-65 направлен на увеличение активности теломеразы, прежде всего, в стволовых клетках, клетках костного мозга, стромальных клетках костного мозга, молодых фибробластах кожи, предшественниках инсулоцитов, нейросферических клетках, адренокортикальных клетках, мышечных, остеопластических, ретинальных пигментированных эпителиалиальных клетках, клетках иммунной системы, включая клетки лимфоидного, миелоидного и эритроидного ростков, таких как В- и Т- лимфоциты, моноциты, циркулирующие и специализированные тканевые макрофаги, нейтрофилы, эозинофилы, базофилы, NK-клетки и их соответствующие предшественники. В этой связи основными показаниями для использования ТА-65 могут быть: обусловленные стрессом и возрастом нарушения иммунной системы, включая нарушение обновления тканей, которое происходит при естественном старении, раке, лечении рака, острых или хронических инфекциях или при генетических нарушениях, вызывающих ускоренную гибель клеток, апластических анемиях и других дегенеративных заболеваниях. Использование ТА-65 для профилактики рака выглядит на первый взгляд парадоксально. Каким же образом, активация теломеразы может предотвратить раковое перерождение клеток. Это происходит, во-первых, потому что за счет омоложения снижается вероятность хромосомных перестроек в клетках, а во-вторых, потому что теломераза может увеличить продолжительность жизни иммунных клеток, улучшив их способность находить и уничтожать раковые клетки. Ранее уже указывалось, что активация теломеразы «генетическим способом» в нормальных клетках приводит к их омоложению без признаков озлокачествления. Научная работа исследователей из Испанского Национального центра по изучению рака продемонстрировала, что TA-65 обладает подобным действием у мышей. В результате исследования были доказаны эффекты ТА-65 по удлинению коротких теломер, и улучшению здоровья старых мышей, включая состояния толерантности к глюкозе, остеопороза и дряблости кожи, без увеличения заболеваемости раком. Еще одно исследование на людях, известное под названием «Протокол Патона» показало, что у пациентов, использующих ТА-65 в течение года, как составляющий компонент программы омоложения не выявило не одного нового случая рака.

В одной из научных работ профессора иммунологии калифорнийского университета, занимающегося проблемами старения и ВИЧ-инфекции Риты Эфрос с соавторами проводилось исследование влияния молекулы ТАТ-2 на функции Т- и В-лимфоцитов. ТАТ-2 по химической структуре представляет собой циклоастрогенол. Аналогичная молекула входит в состав ТА-65. Исследование позволило сделать следующее заключение о безопасности ТАТ-2: «Во всех проведенных на сегодняшний день исследованиях в естественных условиях, не было получено никаких доказательств, что TAT2 способствовало потере контроля роста и преобразования. Например, TAT2 не приводит к какому-либо значительному увеличению конститутивной активности теломеразы в линии Jurkat Т клеток опухоли Supplemental. Кроме того, хроническое воздействие TAT2 не изменяет скорость EBV трансформации нормальных В-лимфоцитов в культуре клеток Важно отметить, что наблюдаемые эффекты регулирования теломеразы являются краткосрочными и обратимым. Удаление TAT2 из клеток возвращает уровни теломеразы к исходным в течение нескольких дней без каких-либо последствий для жизнеспособности клеток.»

3. ЗАКЛЮЧЕНИЕ

Все вышесказанное можно обобщить в следующих выводах:

1. Существует тесная взаимосвязь между существованием коротких теломер в клетке и развитием опухолевого процесса. Свидетельствами тому служат заболевания, при которых отмечаются короткие теломеры: врожденный дискератоз, апластическая анемия, синдром Баретта др.

2. Наличие критически коротких теломер в клетке - признак ее старения и нестабильности. В этот период велика возможность перехода клетки в кризисное состояние, при котором высок риск возникновения хромосомных мутаций, приводящих к развитию рака.

3. Теломераза препятствует укорочению теломер, защищает их структуру. Недостаток теломеразы в активно пролиферирующих клетках (стволовых клетках, клетках костного мозга, стромальных клетках костного мозга, молодых фибробластах кожи, предшественниках инсулоцитов, нейросферических клетках, адренокортикальных клетках, мышечных, остеопластических, ретинальных пигментированных эпителиалиальных клетках, клетках иммунной системы, включая клетки лимфоидного, миелоидного и эритроидного ростков, таких как В- и Т- лимфоциты, моноциты, циркулирующие и специализированные тканевые макрофаги, нейтрофилы, эозинофилы, базофилы) ведет к нарушению их функционирования и к быстрому старению.

4. Малигнизация клетки - сложный многоступенчатый процесс, при котором происходят множественные мутации генетического материала клетки.

5. Для иммортализации злокачественного клона не достаточно экспрессии (активации) гена теломеразы, необходимо еще «отключение» определенных сигнальных механизмов, которые предохраняют клетку от перерождения.

6. Сама по себе теломераза не является онкогеном. Изолированная активация теломеразы за счет генетических манипуляций с геном теломеразы, а также за счет фармакологической стимуляции ТА-65 не приводит к малигнизации клетки. Этот факт доказан множеством научных и экспериментальных работ.

7. ТА-65 способствует профилактике ракового перерождения за счет щадящей активации теломеразы и снижения процента коротких теломер. При этом снижается вероятность хромосомных перестроек в клетках, увеличивается продолжительность жизни иммунных клеток, улучшается их способность находить и уничтожать раковые клетки.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

  1. Blackburn, E.H. (2005) FEBS Lett.,579, 859-862.
  2. Билибин Д.П роль апоптоза в патологии. Москва 2003
  3. Bodnar, A.G. et al., «Extension of life-span by introduction of telomerase into normal human cells», Science279 (5349): 349-52 (Jan. 16, 1998);
  4. Chung, I., Leonhardt, H., and Rippe, K. De novo assembly of a PML nuclear subcompartment occurs via multiple pathways and induces telomere elongation. Journal of Cell Science 124, 2011 3603-3618
  5. Chiu, C.P. et al., «Replicative senescence and cell immortality: the role of telomeres and telomerase» Proc.Soc. Exp. Biol. Med. 214 (2): 99-106 (Feb. 1997);
  6. Егоров Е.Е. Роль теломер и теломеразы в процессах клеточного старения и канцерогенеза.\автореферат докторской диссертации. Москва 2003 с300
  7. Fujimoto, R. et al., «Expression of telomerase components in oral keratinocytes and squamous cell carcinomas»,Oral Oncology 37 (2): 132-40 (Feb. 2001);
  8. Harle-Bachor, C. et al., «Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and inimmortal and carcinoma-derived skin keratinocytes», Proc. Natl. Acad. Sci. USA 93 (13): 6476-81 (Jun. 25, 1996);
  9. Harley, C.B. et al., «Telomeres shorten during ageing of human fi broblasts», Nature 345 (6274): 458-60 (May 31, 1990);
  10. Harley, C.B. et al., «Telomerase, cell immortality, and cancer», Cold Spring Harb. Symp. Quant. Biol. 59:307-15 (1994);
  11. Harley, C.B. et al., «Telomeres and telomerase in aging and cancer», Curr. Opin. Genet. Dev. 5 (2): 249-55 (Apr. 1995);
  12. Harley, C.B. et al., «Telomerase and cancer», Inzportarzt. Adv. Oncol. 57-67 (1996);
  13. Harley, C.B., «Telomerase is not an oncogene», Oncogene 21: 494-502 (2002);
  14. Hannon, G.J. and Beach, D.H., «Increasing proliferative capacity and preventing replicative senescence by increasing telomerase activity and inhibiting pathways inhibiting cell roliferation)), PCT Int. Appl. Pubn. No.WO 2000/031238 (June 2000);
  15. Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Klingelhutz, A.J. / Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells.(1998) Nature, 396, 84-88.
  16. Liu, K., Hodes, R.J., Weng, N. (2001)J. Immunol., 166, 4826-4830.
  17. Mitchell, J.R., Wood, E., Collins, K. (1999) Nature, 402, 551-555.
  18. Osterhage JL, Friedman KL. J Biol Chem. Chromosome end maintenance by telomerase.2009 Jun 12;284(24):16061-5. doi: 10.1074/jbc.R900011200. Epub 2009 Mar 12.
  19. Verdun, R.E., Crabbe, L., Haggblom, C. and Karlseder, J. (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20:551-561. Yudoh, K. et al., «Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomereshorting and replicative senescence in human osteoblasts», J. Bosle and Mineral Res. 16 (8): 1453-1464 (2001).
  20. White, M.A., «Assembly of telomerase components and chaperonins and methods and compositions forinhibiting or stimulating telomerase assembly», PCT Int. Appl. Pubn. No. WO 2000/08135 (Feb. 2000);
  21. Willeit P et.all, Telomere Length and Risk of Incident Cancer and Cancer Mortality, JAMA. 2010; 304(1):69-75.
  22. Steven Russell Fauce,* Beth D. Jamieson,† Allison C. Chin,2,‡ Ronald T. Mitsuyasu,† Stan T. Parish,* Hwee L. Ng,† Christina M. Ramirez Kitchen,§ Otto O. Yang,† Calvin B. Harley,‡ and Rita B. Effros3,* Telomerase-Based Pharmacologic Enhancement of Antiviral Function of Human CD8+ T Lymphocytes The Journal of Immunology November 15, 2008 vol. 181 no. 10 7400-7406

Победить старение организма и приобрести бессмертие мечтает человечество на протяжении всего своего существования. Над достижением этой цели сейчас работают лучшие биологи мира. Возможно, мы подошли к ней уже совсем близко. Теломераза – недавно открытый фермент, отвечающий за бессмертие организма. Но чем будет это открытие? Спасением, сбывшейся мечтой или новым бичом человечества?

Совсем недавно было открыто, что за старение или бессмертие клеток отвечают окончания хромосом, названные теломерами. Апоптоз – биологически запрограммированный процесс старения клетки. Его задача в том, чтобы не дать размножаться клеткам с поврежденными ДНК. У многоклеточных организмов апоптоз отвечает за морфогенез – правильное образование и развитие тканей и органов. Делается это при помощи контроля скорости деления клеток. Одни клетки размножаются быстрее и давят на соседние ткани, в результате орган занимает нужное положение в организме.

Находящиеся на концах хромосом теломеры отвечают не только за бессмертие или старение организма. Они также предохраняют соединение хромосомы с участками ДНК других хромосом, таким образом, препятствуя мутации клетки. Старение основано на неспособности ДНК-полимеразы (фермента отвечающего за копирование ДНК при размножении клетки) копировать ДНК с самого её конца. Таким образом, при каждом делении теломеры на концах хромосом становятся всё короче. Этот процесс длительный, но со временем теломеры исчезают, ДНК хромосом начинает набирать ошибки и возникает мутация клетки. Со временем мутации достигают такого количества, что клетка становится неспособной обеспечивать саму себя питательными веществами и поддерживать постоянство внутренней среды. Клетка погибает.

Однако некоторые клетки имеют кардинальное отличие. Клетки внутренней стенки кишечника, клетки, отвечающие за образование сперматозоидов, а также бактерии и раковые клетки могут делиться бесконечно долго и никогда не стареют. Эта способность обеспечивается особым ферментом, способствующим копированию цепочки ДНК с самого её конца. Таким образом, ответственные за сохранение целостности хромосомы теломеры никогда не исчезают, и клетка становится бессмертной. Этот фермент называется теломераза.

В норме при исчезновении теломер, ДНК клетки с каждым делением накапливает ошибки. В результате ДНК приходит в негодность и клетка гибнет. Но бывает так, что очередная мутация затрагивает участок, кодирующий фермент теломеразу. Из-за этого уже накопившая ошибки ДНК прекращает свое дальнейшее разрушение, давая клетке бессмертие. Но из-за накопленных ошибок клетка не может выполнять свои функции, с этого момента все ресурсы клетки тратятся исключительно на её размножение. Ткань становится злокачественным новообразованием.

Нужно понимать, что активация теломеразы не является причиной появления рака. Например, клетки эндотелия кишечника благодаря теломеразе бессмертны, но при этом не являются злокачественными и успешно выполняют свои функции. Злокачественное образование имеет два кардинальных отличия:

— бессмертие клеток ткани в результате активации теломеразы;

— ошибки в ДНК клетки, из-за чего она не выполняет свои функции.

Именно оба этих фактора, а не только первый, отличают злокачественные клетки.

Способность влиять на теломеразу – ключ к бессмертию и избавлению человечества от онкологических заболеваний. Для избавления от рака необходимо научится отключать теломеразу у отдельных клеток, не затрагивая её функции в остальных тканях и органах. Добиться этого можно путем введения необходимых ферментов местно, в злокачественные ткани.

Добиться бессмертия – задача более сложная. При этом активирующий теломеразу препарат ТА-65 уже получен и поступил в продажу. Но изучение теломеразы не доведено до конца, некоторые её функции в различных тканях ещё не изучены. Несмотря на позитивные результаты от применения препарата, многие врачи рекомендуют использовать его только с разрешения специалиста и при его контроле. Другие врачи рекомендуют отказаться от препарата вовсе.

Главным компонентом препарата является циклоастрогенол – вещество природного происхождения, содержащееся в корне перепончатого астрагала. Его способность активировать теламеразу была доказана ещё в 2009 году. Вещество было опробовано на мышах. В ходе экспериментов обнаружилось, что препарат возвращает молодость особям, избавляет от многих хронических заболеваний. Негативных побочных эффектов не было обнаружено.

Несмотря на это некоторые врачи рекомендуют воздержаться от покупки препарата, обосновывая это отсутствием длительных клинических испытаний на людях. Тем не менее, препарат поступил в продажу и уже имеет множество постоянных покупателей. Курс приема ТА-65 рассчитан на три месяца, после чего необходимо делать перерыв на несколько недель. В день принимают от 1 до 4 таблеток. Их назначение возможно лишь в специализированных клиниках, после выяснения биологического возраста. Стоимость колеблется в зависимости от страны и способа приобретения. Упаковка в 30 таблеток оценивается в 15-25 тысяч рублей, упаковка в 90 таблеток оценивается в 40-55 тысяч рублей.

Видео: Теломеры и теломераза.



Понравилась статья? Поделитесь ей