Контакты

Серологические методы диагностики вирусных инфекций. Серологическая диагностика вирусных инфекций. Название антител, участвующих в осадочных реакциях

Методы лабораторной диагностики вирусных инфекций подразделяются на несколько больших групп.

- Прямые методы, состоящие в выявлении непосредственно в биологическом материале самого вируса или антител к нему.

- Непрямые методы-заключаются в искусственной наработке вируса в значительных количествах, и его дальнейшем анализе.

К наиболее актуальным в повседневной практике методам диагностики относятся:

Серологические методы диагностики - выявление в сыворотке крови пациента определенных антител или антигенов в результате реакции антиген-антитело(АГ-АТ). То есть, при поиске у пациента определенного антигена используется соответствующее искусственно синтезированное антитело, и, соответственно, наоборот-при выявлении антител используют синтезированные антигены.

Реакция иммунофлуоресценции (РИФ)


Основана на использовании меченых красителями антител. При наличии вирусного антигена он связывается с мечеными антителами, и под микроскопом наблюдается специфическая окраска, которая говорит о положительном результате. При этом методе, к сожалению, невозможна количественная интерпретация результата, а только лишь качественная.

Возможность количественного определения дает иммуноферментный анализ(ИФА). Он похож на РИФ, однако в качестве маркеров используют не красители, а ферменты, превращающие бесцветные субстраты в окрашенные продукты, что и дает возможность количественной оценки содержания как антигенов, так и антител.


- Отмывают не связавшиеся антитела и антигены.

- Добавляют бесцветный субстрат, и в лунках с антигеном, который мы определяем, произойдет окрашивание, т.к. там будет связанный с антигеном фермент, после чего на специальном приборе оценивают интенсивность свечения окрашенного продукта.

По похожей схеме происходит и выявление антител.

Реакция непрямой(пассивной) гемаглютинации (РПГА).

Метод основан на способности вирусов связывать эритроциты. В норме эритроциты падают на дно планшета, образуя так называемую пуговку. Однако если в исследуемом биологическом материале находится вирус, он свяжет эритроциты в так называемый зонтик, который не упадет на дно лунки.

Если стоит задача выявления антител, то сделать это возможно при помощи реакции торможения гемагглютинации (РТГА). В лунку с вирусом и эритроцитами закапывают различные пробы. При наличии антител они свяжут вирус, и эритроциты упадут на дно с образованием «пуговки».

Теперь остановимся на методах диагностики непосредственно нуклеиновых кислот исследуемых вирусов, и прежде всего о ПЦР (Полимеразная Цепная Реакция) .

Суть этого метода заключается в обнаружении специфического фрагмента ДНК или РНК вируса путём его многократного копирования в искусственных условиях. ПЦР можно проводить только с ДНК, то есть для РНК-вирусов предварительно необходимо произвести реакцию обратной транскрипции.

Непосредственно ПЦР проводят в специальном приборе, под названием амплификатор, или термоциклер, который поддерживает необходимый температурный режим. ПЦР-смесь состоит из добавленной ДНК, которая содержит интересующий нас фрагмент, праймеров (короткий фрагмент нуклеиновой кислоты, комплиментарный ДНК-мишени, служит затравкой для синтеза комплиментарной цепи), ДНК-полимеразы и нуклеотидов.

Стадии цикла ПЦР:

- Деннатурация-первая стадия. Температура повышается до 95 градусов, цепочки ДНК расходятся друг относительно друга.

- Отжиг праймеров. Температуру понижают до 50-60 градусов. Праймеры находят комплиментарный участок цепи и связываются с ним.

- Синтез. Температуру вновь повышают до 72, это рабочая температура для ДНК-полимеразы, которая, отталкиваясь от праймеров, строит дочерние цепи.

Цикл многократно повторяется. Через 40 циклов из одной молекулы ДНК получается 10*12 степени копий копий искомого фрагмента.

При проведении ПЦР в режиме реального времени синтезируемые копии фрагмента ДНК метятся красителем. Прибор регистрирует интенсивность свечения и по ходу реакции строит графики накопления искомого фрагмента.

Современные методы лабораторной диагностики с высокой достоверностью позволяют выявить присутствие вируса - возбудителя в организме, нередко, задолго до появления первых симптомов заболевания.

При большинстве вирусных инфекций развиваются иммунные реакции, применяемые для диагностики. Клеточные реакции обычно оценивают в тестах цитотоксичности лимфоцитов в отношении инфекционных агентов или заражённых ими клеток-мишеней либо определяют способность лимфоцитов отвечать на различные АГ и митогены.

В работе практических лабораторий выраженность клеточных реакций определяют редко. Большее распространение нашли методы идентификации противовирусных AT.

РН основана на подавлении цитопатогенного эффекта после смешивания вируса со специфичными AT. Неизвестный вирус смешивают с известными коммерческими антисыворотками и после соответствующей инкубации вносят в монослой клеток. Отсутствие гибели клеток указывает на несоответствие инфекционного агента и известных AT.

Торможение гемагглютинации РТГА применяют для идентификации вирусов, способных агглютинировать различные эритроциты. Для этого смешивают культуральную среду, содержащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке. Торможение цитопатического эффекта интерференцией вирусов Реакцию торможения цитопатического эффекта за счёт интерференции вирусов применяют для идентификации возбудителя, интерферирующего с известным цитопатогенным вирусом в культуре чувствительных клеток. Для этого в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1-2 дня в неё вносят известный цитопатогенный вирус (например, любой ЕСНО-вирус). При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим применѐнным AT.

Прямая иммунофлюоресценция.

Среди прочих тестов наибольшее распространение нашла реакция прямой иммунофлюоресценции (наиболее быстрая, чувствительная и воспроизводимая). Например, идентификация ЦМВ по цитопатогенному эффекту требует не менее 2-3 недели, а при использовании меченых моноклональных AT идентификация возможна уже через 24 ч. Имея набор подобных реагентов, их можно вносить в культуры, заражённые вирусом, инкубировать, отмывать несвязавшийся реагент и исследовать с помощью люминесцентной микроскопии (позволяет выявить наличие флюоресценции заражённых клеток).



Иммуноэлектронная микроскопия (аналог предыдущего метода) позволяет идентифицировать различные виды вирусов, выявленные электронной микроскопией (например, различные виды герпесвирусов), что невозможно сделать, основываясь на морфологических особенностях. Вместо антисывороток для идентификации используют помеченные разными способами AT, но сложность и дороговизна метода ограничивают его применение.

Выявление противовирусных антител (AT) в сыворотке крови. РТГА. РСК. РИФ.

Иммуносорбционные методы выявления противовирусных антител.

Более простой и доступный подход - выявление противовирусных антител (AT) в сыворотке. Образцы крови необходимо отбирать дважды: немедленно после появления клинических признаков и через 2~3 недели. Чрезвычайно важно исследовать именно два образца сыворотки. Результаты однократного исследования нельзя считать окончательными из-за невозможности связать появление AT с настоящим случаем. Вполне возможно, что эти AT циркулируют после предшествующей инфекции. В подобной ситуации роль исследования сыворотки, полученной в период реконвалесценции, трудно переоценить. На наличие заболевания в период отбора первой пробы указывает не менее чем четырёхкратное увеличение титра AT, выявленное при исследовании второй пробы.

Перечисленные ниже методы не позволяют дифференцировать антитела (AT), образующиеся во время болезни и циркулирующие после выздоровления (продолжительность этого периода вариабельна для различных инфекций). Поскольку для адекватной диагностики необходимо подтвердить достоверное увеличение титров AT в двух пробах, то первую пробу исследуют в острой фазе, а вторую - в период выздоровления (через 2-3 недели). Полученные результаты носят ретроспективный характер и более пригодны для проведения эпидемиологических обследований. РТГА выявляет AT, синтезируемые против гемагглютининов вирусов (например, вируса гриппа).



Метод позволяет легко выявлять подобные антитела (AT) в сыворотке больного. РСК - основной метод серодиагностики вирусных инфекций (среди доступных). Реакция выявляет комплементсвязывающие IgM и IgG, но не дифференцирует их; для оптимизации получаемых результатов постановка реакции требует определённых навыков персонала.

РИФ. При возможности получить биоптат инфицированной ткани и доступности коммерческих наборов AT, меченных флюоресцеином, диагноз может подтвердить реакция прямой иммунофлюоресценции.

Постановка реакции включает инкубацию исследуемой ткани с AT, их последующее удаление и люминесцентную микроскопию образца. Иммуносорбционные методы выявления противовирусных антител Иммуносорбционные методы (например, ИФА и РИА) более информативны, поскольку выявляют IgM и IgG по отдельности, что позволяет делать определённые выводы о динамике инфекционного процесса или состоянии реконвалесценции. Для выявления AT известный АГ сорбируют на твёрдом субстрате (например, на стенках пробирок, пластиковых микропланшетах, чашках Петри) и вносят различные разведения сыворотки пациента. После соответствующей инкубации несвязавшиеся AT удаляют, вносят антисыворотку к Ig человека, меченную ферментом, повторяют процедуру инкубирования и отмывания несвязанных AT и вносят какой-либо хромогенный субстрат (чувствительный к действию фермента). Поскольку изменение окраски пропорционально содержанию специфических AT, то вполне возможно определение их титра спектрофотометрическим способом. В диагностике ВИЧ-инфекции наибольшее распространение нашёл метод иммуноблотинга.

Выявление вирусных антигенов (АГ). ИФА. В настоящее время уже появились коммерческие наборы для выявления АГ некоторых возбудителей, позволяющие их идентифицировать в течение 5-10 мин. Для выявления АГ на твёрдой фазе сорбируют известные AT и добавляют сыворотку, содержащую АГ; после инкубирования несвязанный АГ декантируют, систему промывают и вносят меченые AT, специфичные к сорбированным AT. Повторяют процедуру инкубирования и отмывания, вносят хромогенный субстрат, положительный результат фиксируют при изменении окраски системы. Гибридизация ДНК - высокоспецифичный метод, позволяющий идентифицировать геном вируса после его гибридизации комплементарными молекулами ДНК. В качестве маркёра применяют ферменты и изотопы.

Метод определяет способность вирусной ДНК гибридизироваться с меченой комплементарной ДНК; специфичность метода прямо пропорциональна длине комплементарной цепочки. Перспективен метод гибридизации нуклеиновых кислот in situ. Для постановки реакции меченую ДНК наносят на биоптаты тканей (в том числе на фиксированные формалином или заключённые в парафиновые блоки) и регистрируют взаимодействие с комплементарной ДНК. Метод используют для выявления вирусов простого герпеса, папилломы человека, Эпштейна-Барр и др.

ПЦР. Метод значительно увеличивает чувствительность метода гибридизации, повышая содержание вирусной ДНК в материале, полученном от больного, а также ускоряет время получения результата.

Оглавление темы "Методы обнаружения вирусов. Методы диагностики микозов (грибковых заболеваний). Методы обнаружения простейших.":










Серологические методы диагностики вирусных инфекций. Торможение гемагглютинации. Торможение цитопатического эффекта интерференцией вирусов. Прямая иммунофлюоресценция. Иммуноэлектронная микроскопия.

При большинстве вирусных инфекций развиваются иммунные реакции, применяемые для диагностики . Клеточные реакции обычно оценивают в тестах цитотоксичности лимфоцитов в отношении инфекционных агентов или заражённых ими клеток-мишеней либо определяют способность лимфоцитов отвечать на различные Аг и митогены. В работе практических лабораторий выраженность клеточных реакций определяют редко. Большее распространение нашли методы идентификации противовирусных AT.

РН основана на подавлении цитопатогенного эффекта после смешивания вируса со специфичными AT. Неизвестный вирус смешивают с известными коммерческими антисыворотками и после соответствующей инкубации вносят в монослой клеток. Отсутствие гибели клеток указывает на несоответствие инфекционного агента и известных AT.

Торможение гемагглютинации

РТГА применяют для идентификации вирусов , способных агглютинировать различные эритроциты. Для этого смешивают культуральную среду, содержащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке.

Торможение цитопатического эффекта интерференцией вирусов

Реакцию торможения цитопатического эффекта за счёт интерференции вирусов применяют для идентификации возбудителя, интерферирующего с известным цитопатогенным вирусом в культуре чувствительных клеток. Для этого в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1-2 дня в неё вносят известный цитопатогенный вирус (например, любой ЕСНО-вирус). При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим применённым AT.

Прямая иммунофлюоресценция

Среди прочих тестов наибольшее распространение нашла реакция прямой иммунофлюоресценции (наиболее быстрая, чувствительная и воспроизводимая). Например, идентификация ЦМВ по цитопатогенному эффекту требует не менее 2-3 нед, а при использовании меченых моноклона л ьных AT идентификация возможна уже через 24 ч. Имея набор подобных реагентов, их можно вносить в культуры, заражённые вирусом, инкубировать, отмывать несвязавшийся реагент и исследовать с помощью люминесцентной микроскопии (позволяет выявить наличие флюоресценции заражённых клеток).

Иммуноэлектронная микроскопия

Иммуноэлектронная микроскопия (аналог предыдущего метода) позволяет идентифицировать различные виды вирусов, выявленные электронной микроскопией (например, различные виды герпесвирусов), что невозможно сделать, основываясь на морфологических особенностях. Вместо антисывороток для идентификации используют помеченные разными способами AT, но сложность и дороговизна метода ограничивают его применение.

Обнаружение в сыворотке крови боль­ного антител против антигенов возбудите­ля позволяет поставить диагноз болезни. Серологические исследования применяют также для идентификации антигенов микро­бов, различных биологически активных ве­ществ, групп крови, тканевых и опухолевых антигенов, иммунных комплексов, рецепто­ров клеток и др.

При выделении микроба от больного про­водят идентификацию возбудителя путем изучения его антигенных свойств с помощью иммунных диагностических сывороток, т. е. сывороток крови гипериммунизированных животных, содержащих специфические ан­титела. Это так называемая серологическая идентификация микроорганизмов.

В микробиологии и иммунологии широко применяются реакции агглютинации, преци­питации, нейтрализации, реакции с участи­ем комплемента, с использованием меченых антител и антигенов (радиоиммунологичес­кий, иммуноферментный, иммунофлюоресцентный методы). Перечисленные реакции различаются по регистрируемому эффекту и технике постановки, однако, все они осно­ваны на реакции взаимодействия антигена с антителом и применяются для выявления как антител, так и антигенов. Реакции иммуните­та характеризуются высокой чувствительнос­тью и специфичностью.

Особенности взаимодействия антитела с ан­тигеном являются основой диагностических реакций в лабораториях. Реакция in vitro меж­ду антигеном и антителом состоит из специ­фической и неспецифической фазы. В специ­фическую фазу происходит быстрое специфи­ческое связывание активного центра антитела с детерминантой антигена. Затем наступает неспецифическая фаза - более медленная, ко­торая проявляется видимыми физическими явлениями, например образованием хлопьев (феномен агглютинации) или преципитата в виде помутнения. Эта фаза требует наличия определенных условий (электролитов, опти­мального рН среды).

Связывание детерминанты антигена (эпитопа) с активным центром Fab-фрагмента анти­тел обусловлено ван-дер-ваальсовыми силами, водородными связями и гидрофобным взаимо­действием. Прочность и количество связавше­гося антигена антителами зависят от аффин­ности, авидности антител и их валентности.

К вопросу про экспресс-диагностику:

1. Диагностике поддается культура выделенная в чистом виде.
2. В Специально оснащенных лабораториях (должно иметься разрешение)
3. Соблюдение строгих правил таких как: изолированное помещение, необходимые специальные защитные костюмы, обязательная полная санитарная обработка помещения после работы с возбудителем, санитарная обработка исследователей после окончания работы.

Методы эксперсс-диагностики.
1.Бактериология - комбинированные политропные питательные среды для быстрого изучения морф,тинктор, биохим. свойств. Использование энзимоиндикаторной ленты, электрофизический метод, метод бумажных дисков, пропитанных различными в-вами (глюказо, лактоза и т.п.)
2.Фагодиагностика.
3.Серодиагностика - метод Манчини, раекция преципитации в геле по Асколи, РА, РПГА.
4. Бактериоскопия - прям и непрям РИФ.

Методы экспресс диагностики при:
Холере - м.З.Ермольевой, р-ция иммобилизации с холерной диагностической сывороткой, РИФ.
Туляремии - РА на стекле, РПГА
Чуме - фаготипирование, метод углеводных бумажных дисков, РПГА.
Сиб.язва - метод Асколи, РИФ, РПГА.

Характер роста: их три диффузный (Факультативные анаэробы), придонный(облигатные анаэробы) и поверхностный(облигатные аэробы.)

Выделение чистой культуры анаэробных бактерий

В лабораторной практике часто придется работать с анаэробными микроорганизмами. Они более прихотливы к питательным средам, чем аэробы, чаще нуждаются в специальных ростовых добавках, требуют прекращения доступа кислорода при их культивировании, длительность роста их длиннее. Потому работа с ними более сложна, требует значительного внимания бактериологов и лаборантов.

Важной является защита материала, который содержит анаэробные возбудители от токсичного влияния атмосферного кислорода. Потому материал из очагов гнойной инфекции рекомендуется забирать во время их пункции с помощью шприца, время между взятием материала и посевом его на питательную среду должно быть максимально коротким.

Поскольку для культивирования анаэробных бактерий используют специальные питательные среды, которые не должны содержать кислорода и имеют низкий окислительно восстановительный потенциал (-20 -150 мВ), к их составу вводят индикаторы – резазурин, метиленовий синей и тому подобное, которые реагируют на смену этого потенциала. При его росте возобновлены бесцветные формы индикаторов изменяют свой цвет: резазурин окрашивает среду в розовый цвет, а метиленовий синей – в голубой. Такие изменения свидетельствуют о невозможности использования сред для культивирования анаэробных микробов.

Способствует снижению окислительно восстановительного потенциала введения в среду не меньше 0,05 % агару, который, увеличивая его вязкость, способствует уменьшению поступления кислорода. Это, в свою очередь, достигается еще и использованием свежих (не позже двух часов после изготовления) и редуцируемых питательных сред.

Следует учесть, что через особенности бродильного типа метаболизма анаэробных бактерий они требуют более богатых на питательные компоненты и витамины сред. Чаще всего используют сердечно мозговой и печеночный настои, соевые и дрожжевые экстракты, гидролитичний перевар казеина, пептон, триптон. Обязательным является добавление факторов росту, таких как твин-80, гемин, менадион, цельная или гемолизированная кровь.

Выделение чистой культуры аеробних микроорганизмов состоит из ряда этапов.
В первый день (1 этап исследования) в стерильную посуду (пробирка, колба, флакон) забирают патологический материал. Его изучают за внешним видом, консистенцией, цветом, запахом и другим признаками, готовят мазок, красят и исследуют под микроскопом. В некоторых случаях (острая гонорея, чума) на этом этапе можно поставить предыдущий диагноз, а кроме того, подобрать среды, на которые будет засеваться материал. Занял проводят бактериологической петлей (применяется чаще всего), с помощью шпателя за методом Дригальского, ватно-марлевым тампоном. Чашки закрывают, переворачивают вверх дном, подписывают специальным карандашом и ставят в термостат при оптимальной температуре (37 °С) на 18-48 год. Цель этапа – получить изолированные колонии микроорганизмов.
Однако, порой с целью нагромождения материала его засевают на жидкие питательные среды.

Из подозрительных колоний готовят мазки, окрашивают за методом Грамма для изучения морфологических и тинкториальних свойств возбудителей, исследуют подвижную бактерий в “висячей” или “раздавленой” капле. Эти признаки имеют чрезвычайно большое диагностическое значение при характеристике отдельных видов микроорганизмов.
Остатки исследуемых колоний осторожно, не касаясь других, снимают из поверхности среды и засевают на скошенный агар или на секторы чашки Петри с питательной средой для получения чистой культуры. Пробирки или чашки с посевами помещают в термостат при оптимальной температуре на 18-24 часа.

На жидких питательных средах бактерии также могут расти по-разному, хотя особенности проявлений роста более бедны, чем на плотных.

Бактерии способны вызывать диффузное помутнение среды, цвет его при этом может не изменяться или приобретает цвет пигмента. Такой характер роста чаще всего наблюдается в большинстве факультативно анаэробных микроорганизмов.

Порой происходит образование осадка на дне пробирки. Он может быть крошкообразным, гомогенным, вязким, слизистым и др. Среда над ним может оставаться прозрачной или становиться мутной. Если микробы пигмента не образуют, осадок имеет сирувато-билий или желтоватый цвет. Подобным чином растут, как правило, анаэробные бактерии.

Пристеночный рост проявляется образованием хлопьев, зерен, прикрепленных к внутренним стенкам пробирки. Среда при этом остается прозрачной.

Аеробные бактерии имеют тенденцию к поверхностному росту. Часто образуется нежная бесцветная или голубоватая пленка в виде едва заметного налета на поверхности, которая исчезает при стряхивании или взбалтывании среды. Пленка может быть влага, толстая, иметь вязанку, слизистую консистенцию и прилипать к петле, тянется за ней. Однако, встречается и плотная, сухая, хрупкая пленка, цвет которой зависит от пигмента, который производится микроорганизмами.

В случае необходимости изготовляется мазок, окрашивается, исследуется под микроскопом, а микроорганизмы засеваются петлей на поверхность плотной питательной среды для получения изолированных колоний.

На третий день (3 этап исследования) изучают характер роста чистой культуры микроорганизмов и проводят ее идентификацию.

Сначала обращают внимание на особенности роста микроорганизмов на среде и делают мазок, крася его за методом Грама, с целью проверки культуры на чистоту. Если под микроскопом наблюдают бактерии однотипной морфологии, размеров и тинкториальних (способность краситься) свойств, делают вывод, что культура чиста. В некоторых случаях уже за внешним видом и особенностями их роста можно сделать вывод о виду выделенных возбудителей. Определение вида бактерий за их морфологическими признаками называется морфологической идентификацией. Определения вида возбудителей за их культуральными признаками называют культуральной идентификацией.

Однако этих исследований недостаточно, чтобы сделать окончательный вывод о виду выделенных микробов. Потому изучают биохимические свойства бактерий. Они достаточно разнообразны.

Чаще всего исследуют сахаролитические, протеолитические, пептолитические, гемолитические свойства, образования ферментов декарбоксилаз, оксидазы, каталазы, плазмокоагулазы, ДНК-азы, фибринолизина, восстановление нитратов в нитриты и тому подобное. Для этого существуют специальные питательные среды, которые засевают микроорганизмами (пестрый ряд Гисса, МПБ, свернутая сыворотка, молоко и др.).

Определение вида возбудителя за его биохимическими свойствами называется биохимической идентификацией.

МЕТОДЫ КУЛЬТИВИРОВАНИЯ
И ВЫДЕЛЕНИЯ ЧИСТОЙ КУЛЬТУРЫ БАКТЕРИЙ

Для успешного культивирования, помимо правильно подобранных сред и правильно произведенного посева, необходимы оптимальные условия: температура, влажность, аэрация (снабжение воздухом). Культивирование анаэробов сложнее, чем аэробов, для удаления воздуха из питательной среды используют различные способы.
Выделение отдельных видов бактерий (чистой культуры) из исследуемого материала, содержащего, как правило, смесь различных микроорганизмов, является одним из этапов любого бактериологического исследования. Чистой культурой микробовполучают из изолированной микробной колонии.
При выделении чистой культуры из крови (гемокультуры) ее предварительно «подращивают» в жидкой среде: 10-15 мл стерильно взятой крови засевают в 100-150 мл жидкой среды. Соотношение засеваемой крови и питательной среды 1:10 не случайно - так достигается разведение крови (неразведенная кровь губительно действует на микроорганизмы).
Этапы выделения чистой культуры бактерий
I этап (нативный материал)
Микроскопия (ориентировочное представление о микрофлоре).
Посев на плотные питательные среды (получение колоний).
II этап (изолированные колонии)
Изучение колоний (культуральные свойства бактерий).
Микроскопическое изучение микробов в окрашенном мазке
(морфологические свойства бактерий).
Посев на скошенный питательный агар для выделения чистой культуры.
III этап (чистая культура)
Определение культуральных, морфологических, биохимических
и других свойств для идентификации культуры бактерий
ИДЕНТИФИКАЦИЯ БАКТЕРИЙ

Идентификацию выделенных бактериальных культур проводят путем изучения морфологии бактерий, их культуральных, биохимических и других признаков, присущих каждому виду.


Похожая информация.


11621 0

Серологические реакции обозначают в соответствии с феноменами, сопровождающими образование комплекса антиген — антитело при взаимодействии различных по свойствам компонентов. Различают реакции агглютинации, преципитации и лизиса.

Реакция агглютинации (РА)

Реакция агглютинации (РА) основана на применении корпускулярного антигена (взвесь бактерий, сенсибилизированных эритроцитов, частиц латекса и др.), взаимодействующего со специфическими антителами, в результате чего образующийся комплекс антиген - антитело выпадает в виде осадка. Эту реакцию широко применяют в лабораторной практике для серологической диагностики бактериальных инфекций и для идентификации выделенных микроорганизмов.

РА используют для диагностики многих инфекционных болезней: бруцеллеза (реакции Райта, Хеддльсона), туляремии, лептоспироза (РАЛ - реакция агглютинации и лизиса лептоспир), листериоза, сыпного тифа (РАР - реакция агглютинации риккетсий), шигеллеза, иерсиниоза, псевдотуберкулеза и др.

Реакция непрямой, или пассивной, агглютинации (РИГА или РПГА).

Для постановки этой реакции используют эритроциты животных (барана, обезьяны, морских свинок, некоторых птиц), сенсибилизированных антителами или антигеном, что достигается инкубацией взвеси эритроцитов и раствора антигена или иммунной сыворотки.

Диагностикумы, полученные на основе эритроцитов, сенсибилизированных антигенами, называют антигенными эритроцитарными диагностикумами . Они предназначены для определения антител в серийных разведениях сывороток крови, например эритроцитарные шигеллезные диагностикумы, эритроцитарные сальмонеллезные О-диагностикумы.

Соответственно диагностикумы на основе эритроцитов, сенсибилизированных специфическими иммуноглобулинами, называют антительными (иммуноглобулиновыми) диагностикумами и они служат для выявления антигенов в различном материале, например эритроцитарный иммуноглобулиновый дифтерийный диагностикум для РИГА, применяемый для выявления дифтерийного экзотоксина коринебактерий в жидкой питательной среде при посеве в нее материала из носа и ротоглотки.

Реакцию гемагглютинации применяют для диагностики как бактериальных (брюшной тиф, паратифы, дизентерия, бруцеллез, чума, холера и др.), так и вирусных (грипп, аденовирусные инфекции, корь и др.) инфекций. По чувствительности и специфичности РИГА превосходит РА.

Реакция торможения гемагглютинации (РТГА)

Реакцию торможения гемагглютинации (РТГА) используют для титрования противовирусных антител в сыворотках крови, а также с целью установления типовой принадлежности выделенных вирусных культур. РТГА можно применить для диагностики тех вирусных инфекций, возбудители которых обладают гемагглютинирующими свойствами.

Принцип метода состоит в том, что сыворотка, содержащая антитела к конкретному типу вируса, подавляет его гемагглютинирующую активность и эритроциты остаются неагглютинированными.

Реакция торможения (задержки) пассивной гемагглютинации (РТПГА).

В РТПГА участвуют три компонента: иммунная сыворотка, антиген (исследуемый материал) и сенсибилизированные эритроциты.

Если в исследуемом материале есть антиген, специфически реагирующий с антителами иммунной стандартной сыворотки, то он связывает их, и при последующем добавлении эритроцитов, сенсибилизированных антигеном, гомологичным сыворотке, гемагглютинация не наступает.

РТПГА применяют для обнаружения микробных антигенов, для количественного их определения, а также для контроля специфичности РПГА.

Реакция латекс-агглютинации (РЛА)

В качестве носителя антител (иммуноглобулинов) используют частицы латекса. РЛА является экспресс-методом диагностики инфекционных болезней, учитывая время проведения (до 10 мин) и возможность обнаружить антиген в небольшом объеме исследуемого материала.

РЛА применяют для индикации антигенов Streptococcus pneumoniae, Haemophilus influenzae типа b, Neisseria meningitidis в цереброспинальной жидкости, выявления стрептококков группы А в мазках из зева, для диагностики сальмонеллеза, иерсиниозов и других заболеваний. Чувствительность метода составляет 1-10 нг/мл, или 10³ -10⁶ бактериальных клеток в 1 мкл.

Реакция коагглютинации (РКоА)

Реакция коагглютинации (РКоА) основана на способности белка А стафилококков присоединять специфические иммуноглобулины. РКА - метод экспресс-диагностики - служит для выявления растворимых термостабильных антигенов в секретах человека и в составе циркулирующих иммунных комплексов (ЦИК). Обнаружение специфических антигенов в составе ЦИК требует их предварительного осаждения из сыворотки крови.

Реакция преципитации

В реакции преципитации (РП) в результате взаимодействия антител с высокодисперсными растворимыми антигенами (белки, полисахариды) образуются комплексы с участием комплемента - преципитаты. Это чувствительный тест, используемый для выявления и характеристики разнообразных антигенов и антител. Простейшим примером качественной РП является образование непрозрачной полосы преципитации в пробирке на границе наслоения антигена на иммунную сыворотку - реакция кольцепреципитации. Широко применяют различные разновидности РП в полужидких гелях агара или агарозы (метод двойной иммунодиффузии, метод радиальной иммунодиффузии, иммуноэлектрофорез).

Реакция связывания комплемента (РСК)

Реакция связывания комплемента (РСК) основана на феномене гемолиза с участием комплемента, т.е. способна выявлять только комплементсвязывающие антитела.

РСК широко применяют для диагностики многих бактериальных и вирусных инфекций, риккетсиозов, хламидиозов, инфекционного мононуклеоза, протозойных инфекций, гельминтозов. РСК является сложной серологической реакцией, в которой участвуют две системы: исследуемая (сыворотка крови), представленная системой антиген - антитело и комплементом, и гемолитическая (эритроциты барана + гемолитическая сыворотка). Гемолитическая сыворотка представляет собой инактивированную прогреванием сыворотку крови кролика, иммунизированного эритроцитами барана. Она содержит антитела против эритроцитов барана.

Положительный результат РСК - отсутствие гемолиза - наблюдают в случае, если в исследуемой сыворотке содержатся антитела, гомологичные антигену. При этом образовавшийся комплекс антиген - антитело связывает комплемент, а в отсутствии свободного комплемента добавление гемолитической системы не сопровождается гемолизом. В случае отсутствия в сыворотке антител, соответствующих антигену, образования комплекса антиген - антитело не происходит, комплемент остается свободным и сыворотка вызывает гемолиз эритроцитов, т.е. наличие гемолиза - это отрицательный результат реакции.

Ющук Н.Д., Венгеров Ю.Я.



Понравилась статья? Поделитесь ей