Контакты

Секреторная функция желудочно-кишечного тракта и ее регуляция. Особенности пищеварения в желудке. Секреторная функция желудка это

СЕКРЕЦИЯ (лат. secretio отделение) - процесс образования в клетке специфического продукта (секрета) определенного функционального назначения и последующего его выделения из клетки.

С., при к-рой секрет выделяется на поверхность кожи, слизистой оболочки или в полость жел.-киш. тракта, называют внешней (экзосекреция, экзокриния), при выделении секрета во внутреннюю среду организма С. называют внутренней (инкреция, эндокриния).

За счет С. осуществляется ряд жизненно важных функций: образование и выделение молока, слюны, желудочного, поджелудочного и кишечного сока, желчи, пота, мочи, слез; образование и выделение гормонов эндокринными железами и диффузной эндокринной системой жел.-киш. тракта; нейросекреция и др.

Начало изучения С. как физиол. процесса связано с именем Р. Гейденгайна (1868), к-рый описал ряд последовательных изменений в клетках желез и сформулировал исходные представления о секреторном цикле в желудке, т. е. о сопряжении цитол. картины желез желудка с содержанием в его слизистой оболочке пепсиногена. Выявление связи между микроскопическими изменениями в строении слюнных желез и их С. при раздражении парасимпатических и симпатических нервов, иннервирующих эти железы, позволили Р. Гейденгайну, Дж. Ленгли и другим исследователям сделать вывод о наличии секреторного и трофического компонентов в деятельности железистых клеток, а также о раздельной нервной регуляции этих компонентов.

Использование световой (см. Микроскопические методы исследования) и электронной микроскопии (см.), авторадиографии (см.), улътрацентрифугирования (см.), электрофизиологических, гисто- и цитохимических методов (см. Электрофизиология , Гистохимия , Цитохимия), методов иммунол. идентификации первичных и последующих секреторных продуктов и их предшественников, получения секретов и их физ.-хим. и биохим. анализа, физиол. методов исследования механизмов регуляции С. и др. расширило представление о механизмах С.

Механизмы секреции

Секреторная клетка может выделять различные по своей хим. природе продукты: белки, мукопротеиды, мукополисахариды, липиды, р-ры солей, оснований и кислот. Одна секреторная клетка может синтезировать и выделять один или несколько секреторных продуктов одной или разной химической природы.

Выделяемый секреторной клеткой материал может иметь различное отношение к внутриклеточным процессам. По Хиршу (G. Hirsch, 1955), могут быть выделены: собственно секрет (продукт внутриклеточного анаболизма), экскрет (продукт катаболизма данной клетки) и рекрет (продукт, поглощенный клеткой и затем в неизмененном виде выделенный ею). При этом основной функцией секреторной клетки является синтез и выделение секретов. Рекретироваться могут не только неорганические вещества, но и органические, в т. ч. высокомолекулярные (напр., ферменты). За счет этого свойства секреторные клетки могут транспортировать или выделять из кровотока продукты метаболизма других клеток и тканей, экскретировать эти вещества, участвуя т. о. в обеспечении гомеостаза всего организма. Секреторные клетки могут рекретировать (ресекретировать) из крови ферменты или их зимогенные предшественники, обеспечивая их гематогландулярную циркуляцию в организме.

В целом резкой границы между различными проявлениями функциональной активности секреторных клеток провести нельзя. Так, внешняя секреция (см.) и внутренняя секреция (см.) имеют много общего. Напр., синтезированные пищеварительными железами ферменты не только экзосекретируются, но и инкретируютси, а гастроинтестинальные гормоны в нек-ром количестве могут переходить в полость жел.-киш. тракта в составе секретов пищеварительных желез. В составе нек-рых желез (напр., поджелудочной) имеются экзокринные клетки, эндокринные клетки и клетки, осуществляющие двунаправленное (экзо- и эндосекреторное) выведение синтезированного продукта.

Эти явления находят объяснение в экскреторной теории происхождения секреторных процессов, предложенной А. М. У голевым (1961). Согласно этой теории оба вида С.- внешняя и внутренняя - произошли как специализированные функции клеток от свойственной всем клеткам функции неспецифической экскреции (т. е. выделения продуктов обмена веществ). Таким образом, по А. М. Уголеву, специализированная морфостатическая С. (без существенных морфол. изменений клетки) произошла не из морфокинетической или морфонекротической С., при к-рой в клетке происходят грубые морфол. сдвиги или гибель их, а из морфостатической экскреции. Морфонекротическая С. является самостоятельной ветвью эволюции желез.

Процесс периодического изменения секреторной клетки, связанный с образованием, накоплением, выделением секрета, и восстановление клетки для дальнейшей С. носит название секреторного цикла. В нем выделяют несколько фаз, граница между к-рыми обычно выражена нерезко; может быть и наложение фаз. В зависимости от временного отношения фаз С. бывает непрерывной и прерывистой. При непрерывной С. секрет выделяется по мере его синтеза. Одновременно происходят поглощение клеткой исходных для синтеза веществ, последующий внутриклеточный синтез и выделение секрета (напр., секреция клеток поверхностного эпителия пищевода и желудка, эндокринных желез, печени).

При прерывистой секреции цикл растянут во времени, фазы цикла в клетке следуют в определенной последовательности друг за другом и накопление новой порции секрета начинается только после выведения из клетки предыдущей порции. В одной и той же железе разные клетки в данный момент могут находиться на разных фазах секреторного цикла.

Для каждой из фаз характерно специфическое состояние клетки в целом и ее внутриклеточных органелл.

Цикл начинается с того, что в клетку из крови (все железы имеют интенсивное кровоснабжение) поступают вода, неорганические вещества и низкомолекулярные органические соединения (аминокислоты, жирные к-ты, углеводы и др.). Ведущее значение в поступлении веществ в секреторную клетку имеют пиноцитоз (см.), активный транспорт ионов (см.) и диффузия (см.). Трансмембранный транспорт веществ осуществляется с участием АТФ-аз и щелочной фосфатазы. Поступившие в клетку вещества используются ею как исходные вещества не только для синтеза секреторного продукта, но и для внутриклеточных энергетических и пластических целей.

Следующей фазой цикла является синтез первичного секреторного продукта. Эта фаза имеет существенные различия в зависимости от вида синтезируемого клеткой секрета. Наиболее полно исследован процесс синтеза белкового секретй в ацинозных клетках поджелудочной железы ((см.). Из поступивших в клетку аминокислот на рибосомах эндоплазматического гранулярного ретикулума в течение 3-5 мин. синтезируется белок, а затем перемещается в систему Гольджи (см. Гольджи комплекс), где накапливается в конденсирующих вакуолях. В них в течение 20-30 мин. происходит созревание секрета, а сами конденсирующие вакуоли превращаются в гранулы зимогена. Роль системы Гольджи в образовании секреторных гранул была впервые показана Д. Н. Насоновым (1923). Секреторные гранулы перемещаются в апикальную часть клетки, оболочка гранулы сливается с плазмо-леммой, через отверстие в к-рой содержимое гранулы переходит в полость ацинуса или секреторного капилляра. От начала синтеза до выхода (экструзии) продукта из клетки проходит 40-90 мин.

Предполагается наличие цитологических особенностей формирования в гранулы различных панкреатических ферментов. В частности, Крамер и Пурт (М. F. Kramer, С. Poort, 1968) указывали на возможность экструзии ферментов минуя фазу конденсации секрета в гранулы, при к-рой синтез секрета продолжается, а экструзия осуществляется путем диффузии негранулированного секрета. При блокаде экструзии восстанавливается накопление гранулированного секрета (регранулярная стадия). В последующей стадии покоя гранулы заполняют апикальную и среднюю части клетки. Продолжающийся, но незначительный по интенсивности синтез секрета восполняет его незначительную экструзию в виде гранулированного и негранулированного материала. Постулируется возможность внутриклеточной циркуляции гранул и их включения из одних органелл в другие.

Пути образования секрета в клетке могут различаться в зависимости от характера выделяемого секрета, специфики секреторной клетки и условий ее функционирования.

Так, синтез первичного продукта идет в гранулярном эндоплазматическом ретикулуме (см.) при участии рибосом (см.), материал перемещается в комплекс Гольджи, где происходит его конденсация и «упаковка» в гранулы, накапливающиеся в апикальной части клетки. Митохондрии (см.) при этом играют, по-видимому, косвенную роль, обеспечивая процесс секретообразования энергией. Так осуществляется в основном синтез белковых секретов.

Во втором, предполагаемом, варианте секретообразования С. происходит внутри или на поверхности митохондрий. Секреторный продукт затем перемещается в комплекс Гольджи, где формируется в гранулы. В процессе образования секрета комплекс Гольджи может и не участвовать. Таким способом могут синтезироваться липидные секреты, напр, стероидные гормоны надпочечника.

В третьем варианте образование первичного секреторного продукта происходит в канальцах агрануляр-ного эндоплазматического ретикулума, затем секрет переходит в комплекс Гольджи, где идет его конденсация. По такому типу синтезируются некоторые небелковые секреты.

Синтез полисахаридного, муко- и гликопротеидного секретов исследован недостаточно, но установлено, что ведущую, роль в нем играет комплекс Гольджи, а также что в синтезе разных секретов в разной мере принимают участие различные внутриклеточные органеллы.

В зависимости от вида выделения: секрета из клетки С. принято делить на несколько основных типов (голокриновую, апокриновую и ме-рокриновую). При голокриновой С. вся клетка в результате ее специализированной деградации превращается в секрет (напр., С. сальных желез).

Апокриновая С., в свою очередь, делится на два основных вида - макроапокриновую и микроапокриновую С. При макроапокриновой С. на поверхности клетки образуются выросты, к-рые по мере созревания секрета отделяются от клетки, в результате чего ее высота уменьшается. По такому типу секретируют многие железы (потовые, молочные и др.). При микроапокриновой С., к-рая наблюдается под электронным микроскопом, от клетки отделяются мелкие участки цитоплазмы (см.) или расширенные вершины микроворсинок, содержащие готовый секрет.

Мерокриновая секреция также делится на два вида - с выходом секрета через образующиеся при контакте с вакуолью или гранулой отверстия в мембране и с выходом секрета из клетки путем диффузии через мембрану, к-рая при этом, видимо, не меняет свою структуру. Мерокриновая С. характерна для пищеварительных и эндокринных желез.

Строгой границы между вышеописанными типами секреции нет. Напр., выделение капли жира секреторными клетками молочной железы (см.) происходит с частью апикальной мембраны клетки. Такой тип С. назван леммокриновой (Е. А. Шубникова, 1967). В одной и той же клетке может происходить смена типов экструзии секрета. Наличие связи между синтезом и экструзией секрета и ее характер окончательно не установлены. Одни исследователи считают, что такая связь имеется, другие отрицают, полагая, что процессы сами по себе автономны. Получен ряд данных зависимости скорости экструзии от скорости синтеза секрета, а также показано, что накопление в клетке секреторных гранул оказывает тормозящее влияние на процесс синтеза секрета. Постоянное выделение небольшого количества секрета способствует его умеренному синтезу. Стимуляция выделения секрета увеличивает и синтез секреторного продукта. Выявлено, что во внутриклеточном транспорте секрета большую роль играют микротрубочки и микрофиламенты. Разрушение этих структур, напр, путем воздействия колхицином или цитохалазином, существенно трансформирует механизмы образования и экструзии секрета. Существуют регуляторные факторы, действующие преимущественно на экструзию секрета или же на его синтез, а также и на обе эти фазы и поступление исходных продуктов в клетку.

Как показал Е. Ш. Герловин (1974), в секреторных клетках в процессе эмбриогенеза, а также при их регенерации отмечается (на примере ацинозных клеток поджелудочной железы) последовательная смена трех главных этапов их деятельности: первый этап - в ядрышках клеточных ядер идет синтез РНК, к-рая в составе свободных рибосом поступает в цитоплазму; 2) второй этап - на рибосомах цитоплазмы осуществляется синтез структурных белков и ферментов, участвующих затем в образовании липопротеидных мембран эндоплазматического ретикулума, митохондрий и комплекса Гольджи; 3) третий этап - на рибосомах гранулярного эндоплазматической ретикулума в базальных частях клеток происходит синтез секреторного белка, к-рый транспортируется в канальцы эндоплазматической ретикулума, а затем в комплекс Гольджи, где оформляется в виде секреторных гранул; гранулы накапливаются в апикальной части клеток, и при стимуляции С. их содержимое выделяется наружу.

Специфика синтеза и выделения разных по составу секретов явилась основанием для вывода о существовании 4 видов секреторных клеток, обладающих специфическими внутриклеточными конвейерами: белок-синтезирующих, мукоид-, липид- и минералсекретирующих.

Секреторные клетки имеют ряд особенностей биоэлектрической активности: низкая скорость колебаний мембранного потенциала, различная поляризованность базальной и апикальной мембран. Для возбуждения одних видов секреторных клеток характерна деполяризация (напр., для экзокринных клеток поджелудочной железы и протоков слюнных желез), для возбуждения других-гиперполяризация (напр., для ацинозных клеток слюнных желез).

В транспорте ионов через базальную и апикальную мембраны таких секреторных клеток имеются нек-рые различия: вначале изменяется поляризованность базальной, затем апикальной мембраны, но при этом базальная плазмолемма более поляризована. Дискретные изменения поляризованности мембран при С. называются секреторными потенциалами. Возникновение их является условием включения секреторного процесса. Оптимальная поляризованность мембран, необходимая для появления секреторных потенциалов, составляет ок. 50 мв. Полагают, что различие поляризованности базальной и апикальной мембран (2-3 мв) создает достаточно сильное электрическое поле (20- 30 в/см). Его сила примерно удваивается при возбуждении секреторной клетки. Это, по мнению B. И. Гуткина (1974), способствует перемещению гранул секрета к апикальному полюсу клетки, циркуляции содержимого гранулы, контакту гранул с апикальной мембраной и выходу через нее из клетки гранулированного и негранулированного макромолекулярного секреторного продукта.

Потенциал секреторной клетки важен и для С. электролитов, за счет к-рой регулируются осмотическое давление цитоплазмы и ток воды, играющие важную роль в секреторном процессе.

Регуляция секреции

C. желез находится под контролем нервных, гуморальных и местных механизмов. Эффект этих влияний зависит от вида иннервации (симпатическая, парасимпатическая), вида железы и секреторной клетки, от механизма действия физиологически активного агента на внутриклеточные процессы ит. д.

По И. П. Павлову, С. находится под контролем трех типов влияний ц. н. с. на железы: 1) функциональных влияний, к-рые можно разделить на пусковые (перевод железы из состояния относительного покоя в состояние секреторной активности) и корригирующие (стимулирующие и тормозящие влияния на секретирую-щие железы); 2) сосудистых влияний (изменение уровня кровоснабжения железы); 3) трофических влияний - на внутриклеточный метаболизм (усиление или ослабление синтеза секреторного продукта). К трофическим влияниям стали относить также и пролиферогенные эффекты в. н. с. и гормонов.

В регуляции С. различных желез нервные и гуморальные факторы соотносятся по-разному. Напр., С. слюнных желез в связи с приемом пищи регулируется практически только нервными (рефлекторными) механизмами; деятельность желудочных желез - нервными и гуморальными; С. поджелудочной железы - преимущественно с помощью дуоденальных гормонов секретина (см.) и холецистокинин-пан-креозимина.

Эфферентные нервные волокна могут образовывать на железистых клетках истинные синапсы. Вместе с тем доказано, что нервные окончания выделяют медиатор в интерсти-ций, по к-рому он диффундирует уже непосредственно к секреторным клеткам.

Физиологически активные вещества (медиаторы, гормоны, метаболиты) стимулируют и тормозят С., действуя на различные фазы секреторного цикла через мембранные рецепторы клетки (см. Рецепторы, клеточные рецепторы) или проникая в ее цитоплазму. На эффективность действия медиаторов влияют его количество и соотношение с ферментом, гидролизующим данный медиатор, количество мембранных рецепторов, реагирующих с медиатором, и другие факторы.

Торможение С. может быть результатом ингибирования высвобождения стимулирующих агентов. Напр., секретин тормозит С. соляной к-ты железами желудка за счет ингибирования высвобождения гастрина (см.) - стимулятора этой С.

На деятельность секреторных клеток различные вещества эндогенного происхождения влияют по-разному. В частности, ацетилхолин (см.), взаимодействуя с клеточными холинорецепторами, усиливает С. пепсиногена железами желудка, стимулируя его экструзию из главных клеток; синтез пепсиногена стимулирует и гастрин. Гистамин (см.) взаимодействует с Н2-рецепторами обкладочных клеток желудочных желез и через систему аденилатциклаза - цАМФ усиливает синтез и экструзию соляной к-ты из клетки. Стимуляция обкладочных клеток ацетилхолином опосредована его действием на их холинорецепторы, усилением поступления в клетку ионов кальция, активацией системы гуанилатциклаза - цГМФ. Важное значение для С. имеет способность ацетилхолина активировать желудочную Na, К-АТФазу и усиливать внутриклеточный перенос ионов кальция. Эти механизмы действия ацетилхолина обеспечивают и высвобождение из G-клеток гастрина, являющегося стимулятором С. пепсиногена и соляной к-ты железами желудка. Ацетилхолин и холецисто-кинин-панкреозимин через системы аденилатциклаза - цАМФ и активации тока ионов кальция в ацинозные панкреатические клетки усиливают в них синтез ферментов и их экструзию. Секретин в центроацинозных клетках и в клетках протоков поджелудочной железы также через систему аденилатциклаза - цАМФ активирует внутриклеточный метаболизм, трансмембранный перенос электролитов и экструзию бикарбонатов.

Библиография: Ажипа Я. И. Нервы желез внутренней секреции и медиаторы в регуляции эндокринных функций, М., 1981, библиогр.; Берхин Е. Б. Секреция органических веществ в почке, Л., 1979, библиогр.; Бродский В. Я. Трофика клетки, М., 1966; Г е р л о- в и н Е. Ш. и Утехин В. И. Секреторные клетки, М., 1979, библиогр.; Елецкий Ю. К. и Яглов В. В. Эволюция структурной организации эндокринной части поджелудочной железы позвоночных, М., 1978; Ивашкин В. Т. Метаболическая организация функций желудка, JI., 1981; Коротько Г. Ф. Выделение ферментов железами желудка, Ташкент, 1971; Павлов И. П. Полное собрание сочинений, т. 2, кн. 2, с. 7, М.- Д., 1951; Панасюк E. Н., Скляров Я. П. и Карпенко JI. Н. Ультраструктурные и микрохимические процессы в желудочных железах, Киев, 1979; Пермяков Н. К., Подольский А. Е. и Титова Г. П. Ультраструктурный анализ секреторного цикла поджелудочной железы, М., 1973, библиогр.; Поликар А. Элементы физиологии клетки, пер. с франц., с. 237, Л., 1976; У го ле в А. М. Энтериновая (кишечная гормональная) система, с. 236, Л., 1978; Физиология вегетативной нервной системы, под ред. О. Г. Баклаваджяна, с. 280, Л., 1981; Физиология пищеварения, под ред. А. В. Соловьева, с. 77, Л., 1974; Ш у б-н и к о в а Е. А. Цитология и цитофизиология секреторного процесса, М., 1967, библиогр.; Case R. М. Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells, Biol. Rev., v. 53, p. 211, 1978; H ok in L. E. Dynamic aspects of phospholipids during protein secretion, Int. Rev. Cytol., v. 23, p. 187, 1968, bibliogr.; Palade G. Intracellular aspects of the process of protein synthesis, Science, v. 189, p. 347, 1975; Rothman S. S. Passage of proteins through membranes-old assumptions and new perspectives, Amer. J. Physiol., v. 238, p. G 391, 1980.

Г. Ф. Коротько.

Подробности

Секреторная функция связана с выработкой железистыми клетками пищеварительных соков: слюны, желудочного, поджелудочного, кишечного соков и желчи.
Секреторная функция - деятельность пищеварительных желез , вырабатывающих секрет (пищеварительный сок), с помощью ферментов которого в желудочно-кишечном тракте осуществляется физико-химическое преобразование принятой пищи.

Секреторная функция желудочно-кишечного тракта.

Секреция - процесс образования из веществ, поступивших из крови в секреторные клетки (гландулоциты), секрета определенного функционального назначения и выделения его из железистых клеток в протоки пищеварительных желез.

Секреторный цикл железистой клетки состоит из трех последовательных и взаимосвязанных этапов :

  • поглощения веществ из крови,
  • синтеза из нихсекреторного продукта и
  • секретовыделения.

Клетки пищеварительных желез по характеру продуцируемого секрета подразделяются на белок-, мукоид- и минералсекретирующие.

Пищеварительные железы отличаются обильной васкуляризацией . Из крови, протекающей по сосудам железы, секреторные клетки поглощают воду, неорганические и органические низкомолекулярные вещества (аминокислоты, моносахариды, жирные кислоты). Этот процесс осуществляется за счет активности ионных каналов, базальных мембран эндотелиоцитов капилляров, мембран самих секреторных клеток. Из поглощенных веществ на рибосомах гранулярного эндоплазматического ретикулума синтезируется первичный секреторный продукт, который подвергается дальнейшим биохимическим превращениям в аппарате Гольджи и накапливается в конденсирующих вакуолях глан-дулоцитов. Вакуоли превращаются в гранулы зимогена (профермента), покрытые липопротеиновой оболочкой, с помощью которой окончательный секреторный продукт транспортируется через мембрану гландулоцита в протоки железы.

Гранулы зимогена выводятся из секреторной клетки по механизму экзоцитоза : после перемещения гранулы к апикальной части гландулоцита происходит слияние двух мембран (гранулы и клетки), и через образовавшиеся отверстия содержимое гранул поступает в ходы и протоки железы.

По характеру выделения секрета этот тип клеток относят к мерокриновым .

Для голокриновых клеток (клеток поверхностного эпителия желудка) характерно превращение всей массы клетки в секрет в результате ее ферментативной деструкции. Апокриновые клетки вьщеляют секрет с апикальной (верхушечной) частью своей цитоплазмы (клетки протоков слюнных желез человека в период эмбриогенеза).

Секреты пищеварительных желез состоят из воды, неорганических и органических веществ . Наибольшее значение для химической трансформации пищевых веществ имеют ферменты (вещества белковой природы), являющиеся катализаторами биохимических реакций. Они относятся к группе гидролаз, способных присоединять к перевариваемому субстрату Н+ и ОН", превращая высокомолекулярные вещества в низкомолекулярные.

В зависимости от способности расщеплять определенные вещества ферменты подразделяются на 3 группы :

  • глюколитические (гидролизующие углеводы до ди- и моносахаридов),
  • протеолитические (гидролизующие белки до пептидов, пептонов и аминокислот) и
  • липолитические (гидролизующие жиры до глицерина и жирных кислот).

Гидролитическая активность ферментов возрастает в известных пределах при повышении температуры перевариваемого субстрата и наличия в ней активаторов, их активность снижается под влиянием ингибиторов.
Максимальная гидролитическая активность ферментов слюны, желудочного и кишечного соков обнаруживается при разном оптимуме рН среды.

Моторная функция желудочно-кишечного тракта.

Двигательная, или моторная, функция осуществляется мускулатурой пищеварительного аппарата на всех этапах процесса пищеварения и заключается в жевании, глотании, перемешивании и передвижении пищи по пищеварительному тракту и удалении из организма непереваренных остатков.

Процесс пищеварения во всех отделах пищеварительного тракта осуществляется при участии двигательной активности его мускулатуры.

  • Сокращения мышц обеспечивают:
  • прием и измельчение пищи в процессе жевания в ротовой полости,
  • глотание и продвижение порции пищи по пищеводу,
  • накопление ее в желудке и эвакуацию его содержимого в кишечник,
  • сокращение и расслабление желчного пузыря,
  • перемешивание и продвижение кишечного содержимого,
  • движение ворсинок,
  • переход химуса из тонкой кишки в толстую, его перемещение по толстой кишке,
  • сокращение и расслабление сфинктеров,
  • перистальтику выводных протоков пищеварительных желез и
  • выведение экскрементов.

Гладкая мускулатура пищеварительного тракта состоит из гладкомышечных клеток (миоцитов). Они собраны в пучки и соединены друг с другом нексусами . Пучок получает нервные терминали, артериолу и выполняет роль функциональной единицы гладкой мышцы. Миоциты обладают способностью к спонтанному ритмическому возбуждению за счет периодической деполяризации их мембраны. Это возбуждение распространяется благодаря нексусам от клетки к клетке (как по синцитию). Пучки миоцитов образуют гладкомышечные слои пищеварительной трубки - циркулярный (внутренний), продольный (наружный) и подслизистый (косой).

Растяжение мышц содержимым желудочно-кишечного тракта является для них адекватным раздражителем , вызывающим деполяризацию мембран их клеток и сокращение мышечных волокон. Частота и сила сокращений миоцитов изменяются в широком диапазоне под влиянием нервных импульсов эфферентных терминалей вегетативных нервных волокон, гормонов и гастроинтестинальных регуляторных пептидов. Комплексная нервно-гуморальная регуляция миоцитов обеспечивает соответствие уровня активности мускулатуры объему и составу содержимого желудка и кишечника.

Характер сократительной деятельности мускулатуры пищеварительного тракта зависит от активности водителей ритма , расположенных в желудке и кишечнике. Они представляют собой гладкомышечные клетки, более чувствительные к биологически активным веществам и имеющие более обильную иннервацию, чем другие пучки миоцитов.
На протяжении пищеварительного тракта у человека имеется около 35 сфинктеров. Они состоят из мышечных пучков, расположенных циркулярно (в основном), спирально и продольно.

Сокращение циркулярных пучков приводит к смыканию сфинктера , а сокращение спиральных и продольных пучков увеличивает его просвет, что способствует переходу содержимого пищеварительного тракта в нижележащий отдел. Сфинктеры обеспечивают движение содержимого пищеварительной трубки в каудальном направлении и временное разобщение функционально различных частей пищеварительного тракта. Основные из них - кардиальный (на входе в желудок), пилорический (на выходе из желудка), в основании баугиниевои заслонки (на входе в слепую кишку), внутренний и наружный анальный (на выходе из прямой кишки).
К моторике также относятся движения ворсинок и микроворсинок .

Анатомическое строение и функции секреторных элементов ЖКТ.

Однослойный однорядный призматический мирковорсинчатый эпителий.

Эпителиальный слой кишки окружен слоями продольных и кольцевых гладких мышц . Мышцы покрыты слоем серозной оболочки, представляющей собой ткань, которая обволакивает наружную поверхность всех висцеральных органов брюшной полости. Внутренняя поверхность тонкого кишечника выстлана пищеварительным эпителием, образующим пальцеобразные ворсинки. Эпителий содержит бокаловидные клетки , разбросанные между цилиндрическими всасывающими клетками.

Ворсинки выступают над поверхностью на высоту 1 мм и каждая из них окружена кольцевым углублением, называемым либеркюновой криптой. Внутри ворсинок расположена сеть кровеносных капилляров и венул, а также сеть лимфатических сосудов с центральным млечным протоком. Именно в эти кровеносные и лимфатические сосуды всасываются питательные вещества. Всасывающие клетки эпителия делятся у основания ворсинки и по мере созревания постоянно перемещаются в сторону ее конца, где они отторгаются в просвет кишки со скоростью (у человека) 2 1010 клеток в сутки.

Сами ворсинки находятся на поверхности обширных кольцевых складок, которые образует слизистая оболочка кишки.

Апикальная поверхность каждой всасывающей клетки кишечного эпителия имеет бороздчатый вид. Это так называемая щеточная кайма, образованная плотными рядами микроворсинок. Число микроворсинок достигает нескольких тысяч на одну клетку (около 2 105 на квадратный миллиметр). Высота микроворсинки составляет 0,5-1,5 мкм, диаметр - около 0,1 мкм.

Микроворсинки заключены в плазматическую мембрану и содержат актиновые филаменты, которые реагируют с миозиновыми, расположенными у основания каждой микроворсинки. Такое взаимодействие между филаментами вызывает ритмические движения микроворсинок. Движения способствуют перемешиванию и обмену кишечного химуса (полужидкой массы частично переваренной пищи) вблизи всасывающей поверхности слизистой оболочки.

Существование иерархии отношений между складками слизистой оболочки, ворсинками и микроворсинками намного повышает эффективность всасывающей поверхности кишечника. Общая площадь внутренней поверхности тонкого кишечника у человека (если считать ее гладкой) равна около 0,4 м2. Складки, ворсинки и микроворсянки увеличивают эту площадь по крайней мере в 500 раз, т. е. до 200-300 м2. Подобное увеличение площади вне сомнения имеет важное значение для процесса всасывания. Дело в том, что скорость этого процесса пропорциональна площади основного диффузионного барьера, роль которого выполняет апикальная поверхность мембраны всасывающих клеток.
Поверхность микроворсинок покрыта гликокаликсом- слоем сетевидной структуры толщиной до 0,3 мкм, состоящим из кислых мукополисахаридов и гликопротеина. Вода и слизь задерживаются в щелях глякокаликса, образуя "неперемешиваемый слой". Слизь выделяют бокаловидные (названные так из-за своей формы) клетки, которые можно встретить среди всасывающих клеток).

Между всасывающими клетками все время сохраняется связь при помощи десмосом. Каждую клетку около ее верхушки окружает окклюзионная зона, способствующая тесному контакту соседних клеток между собой. В кишечном эпителии щелевые контакты особенно плотны. По этой причине апикальные мембраны отдельных всасывающих клеток образуют сплошную апикальную мембрану. Чтобы попасть из цитоплазмы данных клеток в кровь и лимфатические сосуды, все питательные вещества обязательно должны пройти сквозь эту мембрану.

Пристеночное пищеварение.

Пристеночное пищеварение(контактное, мембранное) совершается в тонком кишечнике - в пристеночном слое слизи, на поверхности ворсинок и микроворсинок, в гликокаликсе (мукополисахаридных нитях, связанных с мембраной микроворсинок). В слизи и гликокаликсе содержится много адсорбированных ферментов пищеварительных соков, выделенных в полость кишки и расположенных на огромной площади соприкосновения с перевариваемым субстратом. Поэтому в процессе пристеночного пищеварения значительно увеличивается скорость гидролиза пищевых веществ, что приводит к возрастанию объема всасывания продуктов гидролиза.

Желудок – один из основных органов жизнеобеспечения организма человека. В процессе пищеварения он занимает промежуточную позицию между ротовой полостью, где начинается переработка пищи, и кишечником, где она заканчивается. Пищеварение в желудке состоит из депонирования поступивших продуктов, их механической и химической обработки и эвакуации в кишечник для дальнейшей, более глубокой переработки и всасывания.

В полости желудка потреблённые продукты набухают, переходят в полужидкое состояние. Отдельные компоненты растворяются, затем под действием желудочных ферментов гидролизуются. Помимо этого, желудочный сок обладает выраженными бактерицидными свойствами.

Строение желудка

Желудок – полый мышечный орган. Средние размеры у взрослого человека: длина – около 20 см, объём – 0,5 л.

Желудок условно делят на три отдела:

  1. Кардиальный – верхний, начальный отдел, соединён с пищеводом и первым принимает пищу.
  2. Тело и дно желудка – здесь происходят основные секреторные и пищеварительные процессы.
  3. Пилорический – нижний отдел, через него происходит эвакуация частично переработанной пищевой массы в двенадцатиперстную кишку.

Оболочка или стенка желудка имеет трёхслойное строение:

  • Серозная оболочка покрывает орган снаружи, имеет защитную функцию.
  • Средний слой мышечный, образован тремя слоями гладкой мускулатуры. Волокна каждой отдельной группы имеют разное направление. Это обеспечивает эффективное перемешивание и продвижение пищи по желудку, затем эвакуацию её в просвет двенадцатиперстной кишки.
  • Внутри орган выстлан слизистой оболочкой, секреторные железы которого вырабатывают компоненты пищеварительного сока.

Функции желудка

К пищеварительным функциям желудка относятся:

  • накапливание пищи и её сохранение в течение нескольких часов на период переваривания (депонирование);
  • механическое измельчение и перемешивание поступившей пищи с пищеварительными секретами;
  • химическая обработка белков, жиров, углеводов;
  • продвижение (эвакуация) пищевой массы в кишечник.

Секреторная функция

Химическую обработку поступившей пищи обеспечивает секреторная функция органа. Такое возможно за счёт деятельности желёз, которые расположены на внутренней слизистой оболочке органа. Слизистая оболочка имеет складчатое строение, с множеством ямок и бугорков, поверхность её шероховатая, покрыта множеством ворсинок, разной формы и размеров. Эти ворсинки и есть пищеварительные железы.

Большинство секреторных желез имеют вид цилиндров с наружными протоками, через которые продуцируемые ими биологические жидкости поступают в полость желудка. Таких желёз несколько видов:

  1. Фундальные. Основные и самые многочисленные образования, занимают большую часть площади тела и дна желудка. Их строение сложное. Образованы железы тремя видами секреторных клеток:
  • главными – ответственны за выработку пепсиногена;
  • обкладочными или париетальными, их задача – производство соляной кислоты;
  • добавочными – продуцируют мукоидный секрет.
  1. Кардиальные железы. Клетки этих желёз производят слизь. Расположены образования в верхнем, кардиальном отделе желудка, в том месте, которое первое встречает пищу, поступающую из пищевода. Вырабатывают слизь, она облегчает скольжение пищи по желудку и, покрывая тонким слоем поверхность слизистой оболочки органа, выполняет защитную функцию.
  2. Пилорические железы. Продуцируют небольшое количество слизистого секрета со слабой щелочной реакцией, частично нейтрализует кислую среду желудочного сока перед эвакуацией пищевой массы в просвет кишечника. Обкладочные клетки в железах пилорического отдела присутствуют в небольшом количестве и в процессе пищеварения участия почти не принимают.

В пищеварительной функции желудка основную роль играет секрет фундальных желёз.

Желудочный сок

Биологически активная жидкая субстанция. Обладает кислой реакцией (рН 1,0-2,5), состоит почти полностью из воды, и всего около 0,5 % в нём содержится соляной кислоты и плотных включений.

  • Сок содержит группу ферментов для расщепления белков – пепсины, химозин.
  • А также небольшое количество липазы, которая проявляет активность в отношении жиров.

Желудочного сока в течение суток организм человека вырабатывает от 1,5 до 2 литров.

Свойства соляной кислоты

В пищеварительном процессе соляная кислота действует одновременно в нескольких направлениях:

  • денатурирует белки;
  • активирует инертный пепсиноген в биологически активный фермент пепсин;
  • поддерживает оптимальный уровень кислотности, для активации ферментативных свойств пепсинов;
  • выполняет защитную функцию;
  • регулирует двигательную активность желудка;
  • стимулирует выработку энтерокиназы.

Желудочные ферменты

Пепсины. Главными клетками желудка синтезируется несколько видов пепсиногенов. Действие кислой среды отщепляет от их молекул полипептиды, образуются пептиды, которые проявляют наибольшую активность в реакции гидролиза белковых молекул при рН 1,5-2,0. Желудочные пептиды способны разрушить десятую часть пептидных связей.

Для активации и работы пепсина, вырабатываемого пилорическими железами, достаточна кислая среда с меньшими значениями или вообще нейтральная.

Химозин. Так же как и пепсины, относится к классу протеаз. Створаживает белки молока. Белок казеин под действием химозина превращается в плотный осадок кальциевой соли. Фермент проявляет активность при любой кислотности среды от слабокислой до щелочной.

Липаза. У этого фермента слабые переваривающие способности. Действует только на эмульгированные жиры, например молочные.

Самые богатые кислотой пищеварительные секреты продуцируют железы, расположенные на малой кривизне желудка.

Слизистый секрет. В желудочном содержимом слизь представлена коллоидным раствором, содержит гликопротеины и протеогликаны.

Роль слизи в пищеварении:

  • защитная;
  • поглощает ферменты, это тормозит или прекращает биохимические реакции;
  • инактивирует соляную кислоту;
  • усиливает эффективность процесса расщепления белковых молекул до аминокислот;
  • регулирует процессы кроветворения через посредничество фактора Кастла, который по химическому строению является гастромукопротеидом;
  • участвует в регулировании секреторной деятельности.

Слизь покрывает внутренние стенки желудка слоем 1,0-1,5 мм, тем самым делая их недоступными для разного рода повреждений, как химических, так и механических.

Химическое строение внутреннего фактора Кастла причисляет его к мукоидам. Он связывает витамин В12 и защищает его от разрушения ферментами. Витамин В12 – важный компонент процесса кроветворения, его отсутствие вызывает анемию.

Факторы, защищающие стенки желудка от переваривания собственными ферментами:

  • наличие на стенках слизистой плёнки;
  • ферменты синтезируются и до запуска пищеварительного процесса находятся в неактивной форме;
  • излишки пепсинов после окончания пищеварительного процесса инактивируются;
  • пустой желудок имеет нейтральную среду, пепсины активизируются только от действия кислоты;
  • клеточный состав слизистой оболочки часто меняется, новые клетки появляются на смену старым через каждые 3-5 дней.

Процесс пищеварения в желудке

Переваривание пищи в желудке можно разделить на несколько периодов.

Начало пищеварения

Мозговая фаза. Физиологи называют её сложнорефлекторной. Это начало процесса или пусковая фаза. Процесс пищеварения начинается ещё до того, когда пища коснулась стенок желудка. Вид, запах еды и раздражение рецепторов ротовой полости через зрительные, вкусовые и обонятельные нервные волокна поступают в пищевые центры коры головного и продолговатого мозга, там анализируются и затем по волокнам блуждающего нерва передают сигналы, запускающие работу секреторных желез желудка. В этот период продуцируется до 20 % сока, поэтому пища попадает желудок, в котором уже есть незначительное количество секрета, достаточное для начала работы.

Такие первые порции желудочного сока Павлов И. П. назвал аппетитным соком, необходимым для подготовки желудка к приёму пищи.

На этом этапе процесс пищеварения может стимулироваться или наоборот понижаться. На это влияют внешние раздражители:

  • приятный вид блюд;
  • хорошая обстановка;
  • принятые перед едой пищевые раздражители

Все это действует положительно на стимуляцию желудочной секреции. Обратное действие оказывают неопрятность или плохой внешний вид блюд.

Продолжение процесса пищеварения

Желудочная фаза. Нейрогуморальная. Берёт начало с того момента, когда первые порции еды коснутся внутренних стенок желудка. Одновременно с этим:

  • происходит раздражение механорецепторов;
  • начинается комплекс сложных биохимических процессов;
  • выделяется фермент гастрин, который поступив в кровь, усиливает секреторные процессы в течение всего периода пищеварения.

Это длится несколько часов. Стимулируют выделение гастрина экстрактивные вещества мясных и овощных бульонов и продукты гидролиза белков.

Для этой фазы характерно наибольшее выделение желудочного секрета, до 70 % от общего количества или в среднем до полутора литров.

Заключительная фаза

Кишечная фаза. Гуморальная. Некоторое повышение выделения желудочного секрета происходит при эвакуации содержимого желудка в просвет двенадцатиперстной кишки, до 10 %. Это происходит в ответ на раздражение желёз пилорического отдела и начальных отделов 12-перстной кишки, происходит выброс энтерогастрина, который немного усиливает желудочную секрецию и стимулирует дальнейшие пищеварительные процессы.

Питательных веществ в желудке всасывается очень малое количество:

  • Могут проникать через его слизистую только некоторые виды моносахаридов, аминокислот, минеральных веществ, вода.
  • Жиры почти в неизменённом виде поступают в кишечник.

Желудок опустошается, принимает свои обычные размеры, желудочный сок перестаёт вырабатываться, его остатки из кислой среды переходят в нейтральную. В таком состоянии покоя он будет пребывать до следующего приёма пищи.

Что делать при недостаточности поджелудочной железы?

Как и любые другие патологии, недостаточность поджелудочной железы имеет свои причины возникновения.

Этот орган пищеварительной системы является самой крупной железой организма, которая длительное время может функционировать «на износ», и при этом не подавать никаких признаков перегруженности.

Поджелудочная наделена внутреннесекреторной и внешнесекреторной функциями.

С их помощью орган может регулировать обменные процессы в организме и вырабатывать пищеварительные ферменты, способствующие расщеплению сложных компонентов пищи в кишечнике.

Если ПЖ по каким-либо причинам перестает выделять панкреатический сок, содержащий пищеварительные ферменты, то наступает недостаточность поджелудочной железы.

В списке основных причин, по которым могут возникнуть нарушения в работе пищеварительного органа, находятся:

  • патологическое изменение клеток органа;
  • дефицит витаминов группы B, витаминов C и E, никотиновой кислоты;
  • низкий уровень белка и гемоглобина в крови;
  • питание жирными, слишком острыми и солеными блюдами.

Клеточная структура поджелудочного органа может подвергнуться патологическим изменениям вследствие употребления алкогольных напитков. В результате ткани органа замещаются соединительной тканью, что нарушает работу всего организма.

Например, железа может перестать вырабатывать инсулин, который необходим организму для усвоения глюкозы. Как известно, в результате такого нарушения человек становится диабетиком.

Кроме того, ткани железы могут поразить инфекция, глистная инвазия и коллагеновые болезни.

Но самыми распространенными патологиями, которые оказывают существенное воздействие на структуру тканей пищеварительного органа, являются острый и хронический панкреатит.

В процессе синтеза ферментов пищеварения принимают активное участие витамины группы B, без которых перестает нормально функционировать печень.

Если выделение ферментов и желчи в 12-перстную кишку будет происходить с нарушением, то и процесс пищеварения не будет успешным.

При недостаточности ПЖ витамины данной группы включают в терапию. Дефицит никотиновой кислоты (B3 или PP) вызывает снижение выработки трипсина, амилазы и липазы.

Недостаток витаминов C и E становится причиной образования камней в желчном.

Среди основных причин, по которым у человека возможно нарушение в работе поджелудочного органа, находится наследственная предрасположенность.

В данном случае даже примерный образ жизни и диетическое питание не могут являться гарантией того, что недуг не появиться.

Недостаточность поджелудочной железы бывает четырех видов: внешнесекреторная, экзокринная, ферментная и эндокринная.

Каждый вид патологии имеет свои причины появления, симптомы возникновения и особенности лечения, о чем и будет рассказано далее.

Внешнесекреторная и экзокринная недостаточности

Термин внешнесекреторная недостаточность поджелудочной железы используется в медицинской практике при сниженной выработке ПЖ секрета, способствующего расщеплению сложных компонентов пищи на полезные вещества, которые впоследствии легко усваиваются организмом.

Снижение выработки такого пищеварительного фермента объясняется уменьшением числа клеток в поджелудочной железе, которые отвечают за его производство.

Симптомы внешнесекреторной недостаточности можно отнести к специфическим признакам, ведь именно с их помощью удается диагностировать указанный вид патологии.

В данном случае человек просто не переносит острую и жирную пищу, так как после ее употребления нарушается стул и длительное время чувствуется тяжесть в животе.

У некоторых людей при внешнесекреторной недостаточности ПЖ возникают колики и вздутие живота.

Нередко указанные симптомы сопровождаются возникновением болей в костях и судорогами, появлением одышки и учащенным сердцебиением.

Все эти симптомы появляются вследствие дефицита жиров, которые не могут быть усвоены организмом, но очень важны для его нормального функционирования.

Среди распространенных причин внешнесекреторного нарушения уменьшение функционирующей экзокринной клеточной массы и выброс секрета в 12-перстную кишку.

Лечение данной формы недостаточности ПЖ предполагает соблюдение диетического питания и прием препаратов, способствующих работе ПЖ (Мезим, Панкреатин).

Экзокринная недостаточность поджелудочной железы возникает при дефиците панкреатического сока, способствующего нормальному и стабильному функционированию желудочно-кишечного тракта.

Симптомы экзокринной недостаточности сводятся к плохому перевариванию пищи ЖКТ, появлению тошноты и чувства тяжести в желудке. Все эти факторы сопровождаются нарушением стула и метеоризмом.

Причины, по которым у человека может появиться экзокринная недостаточность поджелудочной железы, сводятся к неправильной работе желудка, желчного пузыря и 12-перстной кишки.

В свою очередь сбой функционирования этих пищеварительных органов может произойти на фоне голодания, частого употребления алкогольных напитков и неправильного питания.

Диагностировать экзокринную недостаточность можно с помощью результатов медицинских анализов крови.

Стоит отметить, что у людей с этой формой патологии высок риск развития сахарного диабета, поэтому им регулярно рекомендуется сдавать кровь на сахар.

Лечение экзокринной недостаточности сводится к ликвидации причины, из-за которой возникла данная болезнь, соблюдению диеты, приему витаминов и препаратов, способствующих выработке панкреатического сока.

Ферментная и эндокринная недостаточность

Ферментативная недостаточность ПЖ диагностируется при дефиците в желудочном соке определенного типа пищеварительного фермента, который способствует перевариванию пищи.

Из основных причин возникновения ферментной недостаточности нужно выделить:

  • патологическое изменение клеток поджелудочного органа, что может произойти из-за длительного воздействия антибиотиков и других лекарственных препаратов;
  • поражение канала ПЖ (расширение Вирсунгова протока);
  • природные патологии пищеварительного органа;
  • заражение инфекцией.

Симптомы того, что у человека ферментативная патология ПЖ, проявляются признаками, подобными тем, что возникают при сбоях в работе кишечника.

В первую очередь это нарушение стула, которое чаще всего проявляется поносом, отличающимся зловонным запахом.

На фоне длительной диареи у некоторых людей возникают обезвоживание и общая слабость. Отсутствие аппетита и появление тошноты сопровождаются усиленным газообразованием и нередко болезненными ощущениями в животе.

Диагностируется ферментативная недостаточность с помощью результатов общего и биохимического анализа крови, анализов мочи и кала, с применением томографии и УЗИ.

Лечение данной формы патологии предполагает соблюдение назначенной врачом диеты и прием лекарственных препаратов, способных оказать необходимую поддержку поджелудочной железе.

Эндокринная (внутрисекреторная) недостаточность ПЖ характеризуется снижением выработки гормонов, среди которых инсулин, глюкагон и липокаин.

Данная форма патологии самая опасная, так как может стать причиной необратимых процессов в человеческом организме.

Главная причина снижения выработки указанных гормонов сводится к повреждению тех участков поджелудочной, которые отвечают за их производство.

Симптомы внутрисекреторных нарушений проявляют себя отклонением показателей уровня гормонов в результатах анализов крови.

Сопровождается такое состояние частой жидкой дефекацией и метеоризмом, при которых держится зловонный запах.

На фоне увеличение числа дефекаций происходит обезвоживание организма, из-за чего возникает общая слабость.

Диагностируется эндокринная патология ПЖ таким же путем, как и ферментативная недостаточность.

Лечение предусматривает соблюдение диеты, направленной на контроль уровня сахара в крови, и прием препаратов, которые назначаются конкретно каждому пациенту.

Хронический эрозивный гастрит — особенности

Хронический эрозивный гастрит — он же эрозийный, геморрагический – довольно распространённое заболевание.

При его развитии на слизистой оболочке желудка образуются очаговые поражения (очаговый — значит, локализованный на относительно небольшом отдельном участке). Стенки кровеносных сосудов в зоне, захваченной воспалением, становятся чрезвычайно тонкими и проницаемыми.

Характерная гастропатия обычно обнаруживается в процессе ФГДС — фиброгастродуоденоскопического обследования.

Типичные причины эрозивного гастрита

Болезнь может относиться как к типу А (аутоиммунное происхождение), так и к типу В (бактериальное происхождение, а именно — действие бактерий хеликобактер пилори). Иногда её провоцируют проблемы с печенью или почечная недостаточность.

Порой эрозии формируются после травм (хирургических операций на ЖКТ, внутренних ожогов). Причиной недуга часто служит также элементарное халатное отношение к собственному здоровью, а именно еда всухомятку, большие перерывы между приёмами пищи, алкоголизм.

Играет роль и частое волнение. Заметим, что люди, которым свойственно тревожиться по пустякам, вообще очень легко приобретают букет разнообразных заболеваний.

Описание недуга

Интересно, что хронический эрозивный гастрит беспокоит пациентов преимущественно в переходные времена года – с сентября по декабрь и с мая по июнь.

Правда, обострения в связи с нарушениями режима питания временем года не в коей мере не предопределяются.

Секреторная функция при хроническом эрозивном гастрите бывает и повышенной, и пониженной. В отдельных случаях она остаётся на уровне допустимой нормы.

Наиболее типичные признаки заболевания

  • дискомфорт в верху живота, особенно после приёма вредной для уязвимого желудка пищи;
  • похудение, связанное с потерей вкуса к еде;
  • тошнота и иногда рвота;
  • изжога;
  • вздутие живота;
  • тяжесть в животе;
  • срыгивание, отрыжка;
  • наличие крови в кале или рвоте.

Основная опасность, которая обычно сопряжена с возникновением эрозий в желудке — риск внутренних кровотечений. Кровь может выходить со стулом, делая его тёмным, или с рвотной массой.

Геморрагический гастрит: лечение

Поражённые участки слизистой постепенно восстанавливаются или же, наоборот, воспаление усугубляется (при несоблюдении рекомендаций лечащего врача). Добросовестное лечение, начатое на ранней стадии эрозивного гастрита, даёт шанс на почти полное выздоровление.

Больному следует сидеть на специальной диете. Рекомендуется отказываться от сдобы, конфет, не есть жареных блюд, отдавая предпочтение бульонам и блюдам из перетёртых компонентов.

В борьбе с недугом применяются в первую очередь медикаментозные методы лечения — по ссылке смотрите информацию о конкретных препаратах для лечения геморрагического гастрита. Используются ингибиторы — лекарства, которые регулируют выделение желудочного сока и корректируют его состав.

Важно помнить, что при данном заболевании нежелателен приём определенных видов таблеток, предназначенных для борьбы с гриппом или простудными заболеваниями (вызвать боли в желудке способен даже, казалось бы, безобидный аспирин).

формы гастрита хронический гастрит

  • Лечение хронического колита: обзор препаратов
  • Диета при хроническом колите: что можно и что нельзя кушать
  • Что такое ирригоскопия кишечника, зачем и как её делают?
  • Колоноскопия: показания, подготовка, прохождение
  • Что показывает копрограмма и как правильно её сдавать?

Сущность и значение процесса пищеварения

Пищеварение – это совокупность процессов физико-химической обработки пищи, образования конечных продуктов распада питательных веществ, способных всасываться в кровь и лимфу.
Благодаря желудочно-кишечному тракту (ЖКТ) организм постоянно получает воду, электролиты и питательные вещества. Это достигается благодаря тому, что:
пища передвигается по ЖКТ;
в просвет органов ЖКТ секретируются пищеварительные соки и под их влиянием пища переваривается;
продукты переваривания и электролиты всасываются в кровь и в лимфу;
контроль всех этих функций осуществляется нервной системой и гуморальными регуляторами.
Физическая обработка пищи – заключается в дроблении пищи, гомогенезации, пропитывании пищеварительными соками, формировании химуса.
Химическая обработка пищи заключается в гидролитическом расщеплении питательных веществ (белков, жиров, углеводов) до мономеров (аминокислот, моноглицеридов и жирных кислот, моносахоридов) при помощи ферментов гидролаз при участии воды и потреблении энергии.
Значение пищеварения. В процессе жизнедеятельности постоянно расходуется энергия и пластические вещества. Система пищеварения обеспечивает поступление в организм воды, электролитов и веществ, необходимых для пластического и энергетического обмена.
Все питательные вещества пищи обладают специфичностью и антигенностью. Если они попадают в кровоток в нерасщеплённом виде, то могут развиваться иммунные реакции вплоть до анафилактического шока. В процессе пищеварения питательные вещества теряют свою генетическую и иммунную специфичность, но полностью сохраняют свою энергетическую ценность.

Функции ЖКТ

Секреторная функция. Она заключается в выделении пищеварительных соков железами ЖКТ. Железы, расположенные на протяжении ЖКТ выполняют две основные функции:
выделяют пищеварительные ферменты;
слизистые железы выделяют слизь, которая смазывает поверхность ЖКТ, а также защищает слизистую от повреждения. Кроме этого в состав пищеварительного сока входят неорганические вещества, которые обеспечивают оптимальные условия для действия ферментов.
Большинство пищеварительных соков формируется только в ответ на присутствие в ЖКТ пищи, а секретируемое их количество, в разных отделах ЖКТ, строго соответствует необходимости расщеплять питательные вещества.
Различают 3 группы ферментов:
карбогидразы – это ферменты, которые расщепляют углеводы до моносахоров;
пептидазы – это ферменты, расщепляющие белки до аминокислот;
липазы – это ферменты, расщепляющие нейтральные жиры и липоиды до конечных продуктов (глицерина и жирных кислот).
Моторная функция. Она обеспечивается поперечно-полосатыми и гладкими мышцами (циркулярными и продольными), входящими в состав стенок ЖКТ. Благодаря ей происходит физическая обработка пищи, перемешивание химуса с пищеварительными соками, а также облегчается контакт пищевых субстратов с ферментами и со стенкой кишки – местом пристеночного пищеварения.
Экскреторная функция. Выделение слизистой ЖКТ продуктов метаболизма клеток. Например, продуктов азотистого обмена, желчных пигментов, солей тяжёлых металлов.
Гемопоэтическая функция. Кроме пищеварительных соков слизистой ЖКТ выделяются вещества, связывающиеся с витамином В 12 и препятствующие его расщеплению (внутренний фактор). Слюнными железами выделяется апоэритин. Кроме того, кислая среда в желудке способствует всасыванию железа в ЖКТ.
Всасывание – моносахаров, аминокислот, глицерина и жирных кислот.
Эндокринная функция. В ЖКТ находится целая система эндокринных клеток, расположенных диффузно и составляющих диффузную эндокринную систему (или АРUD-систему), в который имеется 9 типов клеток, инкретирующих энтеростинальные гормоны в кровь. Эти гормоны регулируют процессы пищеварения (усиливая или ослабляя секрецию соков), моторики, а также многие другие процессы в целом организме.
Витаминообразовательная функция. В ЖКТ образуется ряд витаминов: В 1 , В 2 , В 6 , В 12 , К, биотин, пантотеновая кислота, фолиевая кислота, никотиновая кислота.
Обменная функция. Продукты секреции пищеварительных желез перевариваются и используются в обмене веществ. Так, ЖКТ выделяет от 80 до 100 г белка ежедневно. Во время голодания эти вещества являются единственным источником питания.

Типы пищеварения

В современном животном мире существует три различных типа пищеварения: внутриклеточное, внеклеточное, мембранное.
При внутриклеточном пищеварении ферментный гидролиз пищевых веществ осуществляется внутри клетки.
Внеклеточное пищеварение бывает внешним , полостным и дистантным .
У человека хорошо выражено полостное переваривание.
Типы пищеварения характеризуют не только по месту действия, но и по источникам ферментов. На основании этого критерия выделяют: собственно пищеварение, симбионтное и аутолитическое.
Человек в основном обладает собственно пищеварением. При таком пищеварении источником ферментов является сам организм.
При симбионтном пищеварении оно реализуется за счёт микроорганизмов, находящихся в ЖКТ. Этот вид пищеварения хорошо представлен у жвачных.
Под аутолитичесим пищеварением понимают переваривание пищи, за счёт содержащихся в ней самой ферментов. В пищеварении новорожденных детей большое значение имеют гидролитические ферменты, содержащиеся в материнском молоке.

Физиологические основы голода и насыщения

Функциональная система питания – это замкнутая саморегулирующаяся система органов и процессов, обеспечивающая поддержание постоянства питательных веществ в крови.
Любое изменение концентрации питательных веществ в крови контролируется рецепторным аппаратом – хеморецепторами .
В нервный центр, ответственный за пищеварение, входят ретикулярная формация, гипоталамус, лимбические структуры, кора головного мозга. Главными являются ядра гипоталамической области головного мозга. Нервные клетки гипоталамических ядер получают импульсы не только от периферических хеморецепторов, но и гуморальным путём («голодная» кровь).
Центр голода – латеральное ядро гипоталамуса. Поступление к этому ядру «голодной» крови приводит к появлению чувства голода. С другой стороны, стимуляция вентромедиального ядра гипоталамуса вызывает чувство насыщения. Напротив, разрушение двух выше названных областей сопровождается совершенно противоположными эффектами. Так, повреждение вентромедиального гипоталамуса вызывает появление прожорливости, а у животного развивается ожирения (вес может увеличиваться в 4 раза). При повреждении латерального ядра гипоталамуса развивается полное отвращение к пище, и животное худеет. Следовательно, мы можем обозначить латеральное ядро гипоталамуса, как центр голода или пищевой центр, а вентромедиальное ядро гипоталамуса, как центр насыщения.
Пищевой центр оказывает своё влияние на организм посредством возбуждения желания искать пищу. С другой стороны, считается, что центр насыщения оказывает свое влияние, ингибируя пищевой центр.
Значение других нервных центров, входящих в состав пищевого центра. Если мозг перерезать ниже гипоталамуса, но выше мезэнцефалон, то животное может выполнять основные механические движения характерные для процесса потребления пищи. У него выделяется слюна, оно может облизывать губы, жевать пищу, глотать. Следовательно, механические функции верхних отделов ЖКТ находятся под контролем мозгового ствола. Функция гипоталамуса заключается в контроле потребления пищи, а также в стимуляции нижележащих отделов пищевого центра.
Центры, расположенные выше гипоталамуса, также играют важную роль в регуляции количества потребляемых веществ, особенно в контроле аппетита. К ним относятся амигдала и префронтальная кора, которые тесно связаны с гипоталамусом.

Регуляция количества потребляемой пищи уровнем питательных веществ в крови. Если животное после предоставления ему неограниченного количества пищи затем долгое время вынуждено голодать, то после возобновления ему возможности есть по желанию, оно начинает съедать больше пищи, чем до голодания. Напротив, если животное, после предоставления ему возможности питаться самостоятельно, затем насильно перекармливали, после представления свободного доступа к пище начинает потреблять ее меньше, чем до переедания. Следовательно, механизм насыщения в большой степени зависит от нутритивного статуса организма.
Нутритивные факторы, которые регулируют активность пищевого центра, следующие: содержание глюкозы, аминокислот и липидов в крови.
Давно известно, что снижение в крови концентрации глюкозы вызывает чувство голода (глюкостатическая теория). Также было показано, что содержание липидов в крови (или продуктов их распада) и аминокислот приводит к стимуляции центра голода (липостатическая и аминостатическая теории).
Существует взаимодействие между температурой тела и количеством потребляемой пищи. Когда животное содержится в холодном помещении, оно склонно к перееданию, наоборот, когда животное содержится при высокой температуре, то ест мало. Это связано с тем, что на уровне гипоталамуса существует взаимосвязь между центром, регулирующим температуру, и пищевым центром. Это важно для организма, т.к. приём избыточного количества пищи при снижении температуры воздуха сопровождается увеличением скорости метаболизма и способствует отложению жира, защищающего организм от холода.
Регуляция с поверхности ЖКТ. Для срабатывания долговременных механизмов регуляции необходимо продолжительное время. Поэтому, существуют механизмы, срабатывающие быстро, и благодаря им человек не съедает лишней пищи. Факторы, которые обеспечивают это, следующие.
Наполнение ЖКТ. Когда ЖКТ растягивается пищей (особенно желудок и 12-перстная кишка) от рецепторов растяжения по блуждающим нервам импульсация поступает в пищевой центр и подавляет его активность и желание принимать пищу.
Гуморальные и гормональные факторы, которые подавляют потребление пищи (холецистокинин, глюкагон, инсулин).
Гастроинтестинальный гормон, холецистокинин (ХЦК) высвобождаются, главным образом, в ответ на поступление жира в 12-перстную кишку и, влияя на пищевой центр, подавляют его активность.
Кроме того, по неизвестным причинам, попадание пищи в желудок и в 12-перстную кишку, стимулирует выброс из поджелудочной железы глюкагона и инсулина, которые оба подавляют активность пищевого центра гипоталамуса.
Следовательно, насыщение наступает до того, как пища успеет всосаться в ЖКТ, и пополнятся запасы питательных веществ в организме. Подобный тип насыщения получил название первичного или сенсорного насыщения. После того, как пища всосётся, и пополнятся запасы питательных веществ, в организме наступает вторичное или истинное насыщение.
Исполнительные механизмы функциональной системы питания. Исполнительными важнейшими органами этой системы являются органы ЖКТ, также уровень метаболизма в тканях, депо питательных веществ, перераспределение питательных веществ между органами. Благодаря внутреннему контуру регуляции постоянство питательных веществ может поддерживаться в организме в течение 40-50 дней голодания.

Методы исследования ЖКТ

Фистулы различных отделов ЖКТ. Фистулой называется искусственное сообщение пологого органа или протока железы с внешней средой (И.П.Павлов).
Чистый желудочный сок получают у животных с фистулой желудка и эзофаготомией (опыт мнимого кормления) (И.П.Павлов).
Операция создания изолированного желудочка (по Гендейгайну, по И.П.Павлову) с целью получения чистого желудочного сока во время нахождения пищи в желудке.
Выведение в кожную рану общего желчного протока, что позволяет собирать желчь (И.П.Павлов).
Исследование кишечной секреции производится на изолированных участках тонкой кишки (фистула Тири-Велла).
При изучении всасывания используют метод забора крови оттекающей от пищеварительного тракта (ангиостомия по Е.С.Лондону).
При помощи капсул Лешли-Красногорского можно собрать слюну раздельно из околоушной, подчелюстной и подъязычной желез.
Для изучения секреторной функции ЖКТ человека используют зондовые и беззондовые методы (резиновые зонды, радиопилюли).
Для изучения состояния ЖКТ (моторной деятельности и других функций) применяются рентгенологические методы.
Моторную функцию желудка изучают при помощи регистрации биопотенциалов, которые генерируются гладкими мышцами желудка (электрогастрография).
Акт жевания у человека исследуется путём регистрации движений нижней челюсти (мастикациография) и электрической активности жевательных мышц (миоэлектромастикациография).
Гнотодинамометрия – определение максисального давление, которое могут развивать на разных зубах жевательные мышцы при сжимании челюстей.
Методы эндоскопии (фиброэзофагогастродуоденоскопия (ФЭГДС), ректороманоскопия, ирригоскопия).

Пищеварение в полости рта

Значение . В сутки приблизительно секретируется 1500 мл слюны.
Слюна выполняет в организме многочисленные функции:
облегчает глотание,
увлажняет полость рта, что способствует артикуляции,
способствует очищению рта и зубов,
участвует в формировании пищевого комка,
обладает бактерицидным действием.
Слюна – это секрет 3-х пар слюнных желез (околоушной, подъязычной, подчелюстной) и большого количества маленьких желез слизистой одолочки полости рта. Пищеварительные свойства слюны зависят от количества в ней пищеварительных ферментов.
Раздражение рецепторов полости рта имеет важное значение в осуществлении актов жевания и глотания. Несмотря на то, что пища во рту находится непродолжиткльный период времени, этот отдел пищеварительного тракта оказывает влияние на все этапы переработки пищи.
Состав и физиологическая роль слюны. Слюна состоит из двух основных частей:
серозного секрета, содержащего альфа-амилазу – фермент переваривающий крахмал; мальтазу – фермент, расщепляющий мальтозу на 2 молекулы глюкозы;
слизистого секрета, содержащего муцин, необходимый для смазывания пищевого комка и стенок пищеварительного тракта.
Околоушная железа секретирует всецело серозный секрет, подчелюстная и подъязычная железы выделяют, как серозный, так и слизистый секрет. рН слюны 6,0 - 7,4, что соответствует интервалу, при котором проявляется наибольшая активность амилазы. В небольшом количестве в состав слюны входят липолитические и протеолитические ферменты, которые большого значения не имеют. Слюна содержит особо большое количество ионов К + и бикарбонатов. С другой стороны, концентрация как Na + , так и Cl - в слюне значительно меньше, чем в плазме. Эти различия в концентрации ионов обусловлены механизмами секреции этих ионов в слюну.
Секреция слюны происходит в две фазы: во-первых, функционируют ацинусы слюнных желез, во-вторых, их протоки (рис.38).
Ацинарный секрет содержит амилазу, муцин, ионы, концентрация которых мало отличается от таковой в типичной внеклеточной жидкости. Затем первичный секрет проходит через потоки, в которых
активно реабсорбируется ионы Na + ;
активно секретируются ионы К + в обмен на Na + , однако, их секреция происходит с меньшей скоростью.


Рис.38. Секреция слюны.


Следовательно, содержание ионов Na + в слюне значительно снижается, в то время, как концентрация К + увеличивается. Превалирование реабсорбции Na + над секрецией К + создаёт разность потенциалов в стенке слюнного протока и это создает условия для пассивной реабсорбции ионов Сl - .
Ионы бикарбоната секретируются в слюну эпителием слюнных протоков. Это связано с обменом входящего Сl - на НСО 3 - , а также частично это происходит при помощи механизма активного транспорта.
В присутствии избыточной секреции альдостерона реабсорбция ионов Na + , Сl - , а также секреция ионов К + существенно увеличивается. В связи с этим концентрация ионов Na + и Сl - в слюне может уменьшаться до нуля, на фоне возрастания концентрации ионов К + .
Значение слюны в гигиене рта. В базальных условиях секретируется приблизительно 0,5 мл/мин слюны, причём она всецело слизистая. Эта слюна играет чрезвычайно важную роль в гигиене полости рта.
Слюна смывает патогенные бактерии и частицы пищи, которые служат им пищевым субстратом.
Слюна содержит бактерицидные вещества. К ним относятся тиоцианат, немногочисленные протеолитические ферменты, среди которых наиболее важным является лизоцим. Лизоцим атакует бактерии. Ионы тиоцианата, проникают внутрь бактерии, где становятся бактерицидными. Слюна часто содержит большое количество антител, которые могут разрушать бактерии, в том числе и те, которые вызывают кариес.
Регуляция секреции слюны. Слюнные железы контролируются парасимпатической и симпатической нервной системой.
Парасимпатическая иннервация. Слюноотделительное ядро располагается в месте соединения варолиевого моста и продолговатого мозга. Это ядро получает афферентные импульсы от рецепторов языка и других областей полости рта. Многие вкусовые стимулы, особенно кислые продукты, вызывают обильную секрецию слюны. Также определенные тактильные стимулы, такие как, присутствие во рту гладкого предмета (например, камушек) вызывают обильную саливацию. В то же время, грубые объекты угнетают слюноотделение.
Важным фактором, который изменяет секрецию слюны является кровоснабжение желез. Это связано с тем, что для секреции слюны всегда необходимо поступление большого количества питательных веществ. Вазодилататорный эффект ацетилхолина обусловлен калликреином, который секретируется активированными клетками слюнной железы, и затем в крови способствует образованию брадикинина, являющегося сильным вазодилататором.
Слюноотделение может стимулироваться или ингибироваться импульсами, поступающими из высших отделов ЦНС, например, когда человек потребляет приятную пищу, у него выделяется больше слюны, чем когда он принимает неприятную ему пищу.
Симпатическая стимуляция. Постганглионарные симпатические нервы выходят из верхнего шейного узла и затем идут вдоль кровеносных сосудов к слюнным железам. Активация симпатической нервной системы подавляет слюноотделение.

Пищеварение в желудке

Состав и свойства желудочного сока. Кроме клеток слизистой желудка, секретирующих слизь, имеется два типа желез: желудочные и пилорические.
Желудочные железы секретируют кислый сок (благодаря наличию в нем соляной кислоты), содержащий семь неактивных пепсиногенов, внутренний фактор и слизь. Пилорические железы секретируют, главным образом, слизь, которая защищает слизистую оболочку, а также небольшое количество пепсиногена. Желудочные железы расположены во внутренней поверхности тела и дна желудка и составляют 80% всех желез. Пилорические железы располагаются в антральной части желудка.
Секреция желудочных желез. Железы желудка состоят из 3-х различных типов клеток: главные, которые секретируют пепсиногены; добавочные – секретируют слизь; париетальные (обкладочные) – секретируют соляную кислоту и внутренний фактор.
Таким образом, в состав желудочного сока входят протеолитические ферменты, принимающие участие в начальной стадии переваривания белков. К ним относятся пепсин, гастриксин, реннин. Все эти ферменты эндопептидазы (т.е. в активном состоянии они расщепляют внутренние связи в молекуле белка). В результате их действия образуются пептиды и олигопептиды. Отметим, что все эти ферменты секретируются в неактивном состоянии (пепсиноген, гастриксиноген, ренниноген). Процесс их активации запусается соляной кислотой, в дальнейшем протекает аутокаталитически под действием первых порций активного пепсина. Собственно пепсинами принято называть те формы, которые гидролизуют белки при рН 1,5-2,2. Те фракции, активность которых максимальна при рН 3,2-3,5, называют гастриксинами. Благодаря соляной кислоте рН желудочного сока 1,2-2,0. Если рН увеличивается до 5, активность пепсина исчезает. В состав желудочного сока входят также Са 2+ , Nа + , Мg 2+ , К + , Zn , HCO 3 - .
Соляная кислота. Когда стимулируются обкладочные клетки, они секретируют соляную кислоту, осмотическое давление которой почти точно равно осмотическому давлению тканевой жидкости. Механизм секреции соляной кислоты можно представить себе следующим образом (рис.39).


Рис.39. Механизм секреции соляной кислоты


1. Ионы хлора активно транспортируются из цитоплазмы обкладочных клеток в просвет желез, а ионы Na + наоборот. Эти два одновременно проникающих процесса создают отрицательный потенциал от -40 до -70 мВ, который обеспечивает пассивную диффузию ионов К + и небольшого количества Nа + из цитоплазмы обкладочных клеток в просвет железы.
2. В цитоплазме обкладочной клетки вода распадается на Н + и ОН-. После этого Н + активно секретируется в просвет железы в обмен на К + . Этот активный транспорт катализируется Н + /К + АТФ-азой. Кроме того, ионы Nа + активно реабсорбируются отдельным насосом. Таким образом, ионы К + и Nа + , которые диффундируют в просвет железы, реабсорбируются назад, а водородные ионы остаются, создавая условия образования HCl.
3. Н 2 О проходит из внеклеточной жидкости через обкладочную клетку в просвет железы по осмотическому градиенту.
4. В заключение СО 2 , образующийся в клетке, или поступающий из крови под влиянием карбангидразы соединяется с ионом гидроксила (ОН -) и образуется бикарбонат анион. Затем НСО 3 - диффундирует из обкладочной клетки во внеклеточную жидкость в обмен на ионы Cl - которые входят в клетку и затем активно секретируются в просвет железы. Важность СО 2 в химических реакциях образования НСI доказывает тем, что при введении ингибитора карбангидразы ацетазоломида уменьшается образование НСI.
Функции НС l:
Способствует набуханию и денатурации белков.
Обеззараживает содержимое желудка.
Способствует эвакуации содержимого желудка.
В желудочном соке находится также небольшое количество липазы, амилазы и желатиназы.
Секрет пилорических желез. По структуре пилорические железы напоминают желудочные железы, однако они содержат меньше главных клеток и практически не содержат париетальных клеток. Кроме того в них находится большое количество добавочных клеток секретирующих слизь.
Значение слизи в том, что она покрывает слизистую желудка и предупреждает её повреждение (самопереваривание) пищеварительными ферментами. Поверхность желудка между железами всецело покрыта слизью, причем толщина слоя может достигать 1 мм.
Регуляция желудочной секреции. Фазы отделения желудочного сока (рис.40). Центральное место в гуморальной регуляции желудочной секреции занимают ацетилхолин, гастрин и гистамин.
Ацетилхолин – выделяется из холинэнергических волокон блуждающего нерва и оказывает непосредственное возбуждающее действие на секреторные клетки желудка. Кроме того он вызывает выделение гастрина из G-клеток антрального отдела желудка.
Гастрин . Это пептид состоящий из 34 аминокислот. Он выделяется в кровь и переносится к желудочным железам, где стимулирует обкладочные клетки и усиливает выделение НСI. В свою очередь НСI инициирует рефлексы, которые увеличивают выделение проферментов главными клетками. Гастрин выделяется под влиянием продуктов неполного переваривания белков (пептидов и олигопептидов). Секреция желудочного сока усиливается под влиянием бульонов, так как в них есть гистамин. Сама НСI может стиимулировать секрецию гастрина. Гастрин выделяется G-клетками в антральной части желудка, их отростки которых обращены в просвет желудка и на них есть рецепторы, которые взаимодействуют с НСI. Однако, как только рН желудочного сока становится равной 3 выделение, гастрин тормозится.


Рис.40. Регуляция секреции желудочного сока париетальными клетками

(W.F. Ganong,1977)


Гистамин – стимулирует образование НСI. В слизистой желудка постоянно образуется небольшое количество гистамина. Стимулом для его выделения является кислый желудочный сок или другие причины. Этот гистамин способствует секреции лишь небольшого количества НСI. Однако, как только ацетилхолин или гастрин будут стимулировать париетальные (обкладочные) клетки, то присутствие даже небольшого количества гистамина будет существенно увеличивать секрецию НСI. Этот факт подтверждается тем, что при добавлении блокаторов гистамина (циметидина) ни ацетилхолин, ни гастрин не могут вызвать увеличение секреции НСI. Следовательно, гистамин является необходимым кофактором в действии ацетилхолина и гастрина.
При взаимодействии ацетилхолина с М 3 -холинорецепторами и гастрина с соответствующими рецепторами, расположенными на мембране париетальной клетки, увеличивается внутриклеточная концентрация ионов кальция. При взаимодействии гистамина с Н 2 -рецепторами через активирующую субъединицу ГТФ-зависимого белка происходит активация аденилатциклазы и увеличивается внутриклеточное образование ц-АМФ. ПГЕ 2 действует через ингибиторную единицу ГТФ-зависимого белка, подавляя активность аценилатциклазы и уменьшая внутриклеточную концентрацию ионов кальция. Ц-АМФ и ионы кальция необходимы для активации протеинкиназы, которая, в свою очередь, увеличивает активность водород-калиевого насоса. Таким образом, внутриклеточные события взаимодействуют так, что активация одного вида рецепторов усиливает действие других видов рецепторов. Знание этих механизмов позволило, используя соответствующие блокаторы влиять на секрецию соляной кислоты. Так, омепразол – блокатор Н + /К + насоса и циметидин – блокатор Н 2 -гистаминовых рецепторов широко применяются при язвах желудка и 12-перстной кишки.
Выделение желудочного сока также тормозится под влиянием соматостатина.
Нервнорефлекторная регуляция. Почти 50% сигналов, которые поступают в желудок берут начало в дорзальном моторном ядре блуждающего нерва. По блуждающему нерву эти сигналы поступают к интрамуральной нервной системе желудка, а затем к железистым клеткам.
Оставшиеся 50% сигналов генерируются при участии местных рефлексов, которые осуществляются энтеральной нервной системой.
Все секреторные нервы высвобождают ацетилхолин. Нервы стимулирующие секрецию гастрина могут быть активированы сигналами, поступающими из мозга, особенно из лимбической системы или из самого желудка.
Сигналы, которые поступают из желудка инициируют 2 различных вида рефлексов.
1. Центральные рефлексы, которые начинаются в желудке, их центр находится в стволе мозга;
2. Местные рефлексы, которые начинаются в желудке и передаются всецело посредством энтеральной нервной системы.
К стимулам, которые могут инициировать рефлексы относятся:
растяжение желудка;
тактильное раздражение слизистой желудка;
химические стимулы (аминокислоты, пептиды, кислоты).
В регуляции желудочной секреции выделяют три фазы: мозговую, желудочную и кишечную, в зависимости от места действия раздражителя.
I. Мозговая фаза. Мозговая фаза желудочной секреции начинается уже до попадания пищи в рот человека. Это сокоотделение возникает на вид, запах пищи (условнорефлекторный компонент мозговой фазы). Большое значение в этой фазе имеет раздражение рецепторов полости рта.
Впервые наличие этой фазы было показано в опыте мнимого кормления. Собаке перерезали пищевод и его концы вшивали в кожу шеи, а в желудок вставляли фистулу. После выздоровления собаке, давали пищу, которая попадала в рот и выпадала назад в тарелку из отверстия пищевода. В это время в желудке начинал выделяться желудочный сок. Если собаке перерезали блуждающие нервы, то сокоотделения в желудке не происходило.
Механизм. Нейрогенные сигналы, которые вызывают мозговую фазу желудочной секреции могут возникать в коре головного мозга или при раздражении рецепторов (механорецепторов, хеморецепторов) полости рта. От этих рецепторов возбуждение поступает в дорзальное двигательное ядро блуждающего нерва и затем к желудку.
II. Желудочная фаза. Как только пища поступает в желудок она инициирует ваговагальный рефлекс, а также местные рефлексы. Кроме того в этой фазе большое значение имеет гастриновый механизм. Это приводит к увелечению желудочной секреции на протяжении всего того времени пока пища находится в желудке. Эта фаза секреции обеспечивает секрецию 2/3 всего желудочного сока.
Механизм. Пищевые массы растягивают желудок и раздражают механорецепторы. От этих рецепторов возбуждение поступает в продолговатый мозг, в дорзальное двигательное ядро вагуса, а затем по блуждающим нервам – к желудку.
Местные рефлексы начинаются в хеморецепторах желудка, затем поступают к чувствительному нейрону расположенному в подслизистом слое желудка, затем к вставочному, а затем к эфферентному нейрону (этот эфферентный нейрон является постганглионарным нейроном парасимпатической нервной системы). В результате этого рефлекса усиливается выделение желудочного сока.
III. Кишечная фаза. Присутствие пищи в верхней части тонкого кишечника, особенно, в 12-перстной кишке, способно немного стимулировать выделение желудочного сока. Это связанно с тем, что из слизистой 12-перстной кишки в ответ на растяжение и химические стимулы может выделять гастрин, который усилит выделение желудочного сока. Кроме этого, аминокислоты, которые всасываются в кровь в кишечнике, другие гормоны и местные рефлексы также немного стимулируют выделение сока.
Однако, есть некоторые кишечные факторы, способные ингибировать секрецию желудочного сока. Причем сила их действия значительно превышает силу действия возбуждающих стимулов.
Механизм ингибирования желудочной секреции.
1. Присутствие пищи в тонком кишечнике инициирует энтерогастральные рефлексы (местные и центральные), которые тормозят секрецию желудочного сока. Эти рефлексы начинаются от рецепторов растяжения, от присутствия НСI, продуктов распада белков или раздражения слизистой 12-перстной кишки.
2. Наличие кислоты, жира, продуктов распада белков, гипо- и гиперосмотические жидкости, вызывают освобождение из слизистой тонкого кишечника интестинальных гормонов. К ним относятся секретин и холецистокинин. Наибольшее значение они имеют в регуляции секреции сока поджелудочной железы, а холецистокинин также стимулирует и сокращение мышцы желчного пузыря. В дополнение к этим эффектам эти оба гормона тормозят секрецию желудочного сока. Кроме этого, гастроингибирующий полипептид (ГИП), вазоактивный интестинальный полипептид (ВИП) и соматостатин в небольшой степени способны ингибировать секрецию желудочного сока.
Физиологическое значение ингибирования желудочной секреции заключается в уменьшении эвакуации химуса из желудка, когда тонкий кишечник наполнен. Фактически рефлексы и блокирующие гормоны тормозят эвакуаторную функцию желудка, и в то же время снижают секрецию желудочного сока.

Характер желудочной секреции на различные пищевые продукты

Вне пищеварения железы желудка выделяют небольшое количество сока. Стимулирующие и тормозные регуляторные факторы обеспечивают зависимость сокоотделения желудка от вида принимаемой пищи (И.П.Павлов). По данным И.Т.Курцина, показатели секреции на мясо, хлеб, молоко располагаются по величине следующим образом:
Объём сока – мясо, хлеб, молоко.
Длительность секреции – хлеб, мясо, молоко.
Кислотность сока – мясо, молоко, хлеб.
Пищеварительная сила сока – хлеб, мясо, молоко.
Кроме того, необходимо отметить, что:
1) на все эти раздражители пепсина выделяется больше в начале секреции и меньше при её завершении;
2) пищевые раздражители, вызывающие секрецию с большим участием блуждающих нервов (хлеб) стимулируют выделение сока с более высоким содержанием в нём пепсина, чем раздражители со слабо выраженным рефлекторным воздействием (молоко);
3) соответствие секреции особенностям пищи обеспечивает эффективное переваривание.
Поэтому если человек в течение продолжительного времени питается каким-либо одним типом пищи, то характер секретируемого сока может существенно измениться. При приеме растительной пищи уменьшается секреторная активность во вторую и третью фазы, несколько увеличиваясь в первую. Белковая пища, напротив, стимулирует выделение сока преимущественно во вторую и третью фазы. Причем может трансформироваться и состав сока.

Язва желудка. Появление язвы желудка или 12-перстной кишки у человека связано с нарушением барьерной функции слизистой оболочки и воздействия агрессивных факторов желудочного сока. Важное значение в нарушении этого барьера имеют

Микроорганизмы Helicobacter pylori ;
лекарственные препараты, такие как аспирин или нестероидные противовоспалительные средства широко применяемые, как обезболивающие и противовоспалительные при лечении артритов;
продолжительная гиперсекреция соляной кислоты в желудке.
В качестве примера можно привести появление язвы препилорического отдела желудка или 12-перстной кишки при синдроме Золлингер-Эллисона. Этот синдром наблюдается у пациентов с гастриномами. Эи опухоли могут появляться в желудке или в 12-перстной кишке, но как правило, большинство из них находится в поджелудочной железе. Гастрин вызывает продолжительную гиперсекрецию соляной кислоты, в результате чего появляются тяжелые язвы.
Лечение подобных язв заключается в хирургическом удалении гастрином.

Внешнесекреторная деятельность поджелудочной железы

Поджелудочная железа – это большая сложная железа, по структуре напоминающая слюнную. Кроме того, что поджелудочная железа секретирует инсулин, ее ацинарные клетками продуцируют пищеварительные ферменты, а клетки маленьких и больших протоков, выходящие из ацинусов образуют раствор бикарбонатов. Затем продукт сложного состава по длинному протоку, впадающему в общий желчный проток, попадает в 12-перстную кишку. Сок поджелудочной железы почти всецело секретируется в ответ на поступление химуса в верхнюю часть тонкого кишечника, и состав этого сока полностью зависит от характера принятой пищи.
Состав сока поджелудочной железы. Сок содержит ферменты всех типов: протеазы, карбогидразы, липазы и нуклеазы.
Протеолитические ферменты: трипсин, химотрипсин, карбоксипептидаза, эластаза. Наиболее важным из них является трипсин. Все протеолитические ферменты секретируются в неактивном виде. Превращение трипсиногена в трипсин происходит под влиянием фермента, расположенного на щёточной каёмке энтерокиназы (энтеропептидазы), при поступлении сока поджелудочной железы в 12-перстную кишку. Секреция энтерокиназы усиливается под влиянием холецистокинина. В её состав входит 41% полисахаридов, которые очевидно предупреждают её переваривание. После активации трипсин активирует химотрипсиноген и другие ферменты, причём трипсин сам активирует трипсиноген (аутокаталитическая цепочечная реакция).
Трипсин и химотрипсин разрушают целые белки и олигопептиды на пептиды различной величины, но не до аминокислот. Карбоксипептидаза разрушает пептиды до аминокислот, тем самым завершая их переваривание.
Активация трипсина в поджелудочной железе будет приводить к её самоперевариванию. Поэтому неудивительно, что в поджелудочной железе в норме содержится ингибитор трипсина.
Активация ферментов поджелудочного сока представлена на рис.41.


Рис.41. Активация ферментов поджелудочного сока


Карбогидразы : панкреатическая амилаза (альфа-амилаза) – фермент, который гидролизует крахмал, гликоген и большинство углеводов (исключая клетчатку) до ди- и трисахаридов. Небольшое количество липазы в норме попадает в кровообращение, но при остром панкреатите уровень альфа-амилазы в крови значительно возрастает. Поэтому измерение в плазме крови уровня амилазы имеет диагностическое значение.
Липазы : панкреатическая липаза – гидролизует нейтральный жир до глицерина и жирных кислот; холестеринэстераза – гидролизует эфиры холестерина; фосфолипаза – отщепляет жирные кислоты от фосфолипидов.
Нуклеазы : ДНК-аза, РНК-аза.
Секреция ионов бикарбоната. Если ферменты секретируются ацинарными клетками, то бикарбонаты и вода секретируются эпителиальными клетками маленьких и больших протоков. Стимулы для секреции ферментов и бикарбонатов различны.
Ионы бикарбонатов в соке поджелудочной железы создают щелочную среду, которая необходима, чтобы нейтрализовать кислоту в химусе и создать необходимое рН для нормальной функции ферментов.


Рис.42. Секреция бикарбонатов.


Секреция бикарбонатов происходит следующим образом (рис. 42):
1) СО 2 диффундирует из крови внутрь клетки и соединяется с водой под влиянием карбангидразы с образованием Н 2 СО 3 . Угольная кислота в свою очередь диссоциирует на Н + + НСО 3 - . НСО 3 - активно транспортируется из клетки в просвет канальца;
2) Н+ выходит из клетки в кровь в обмен на входящий внутрь эпителиоцита ионов Nа + (Н+Na+АТФаза). Затем ионы натрия по градиенту концентрации или активно поступают из клетки в просвет канальца, обеспечивая электронейтральность для HCO 3 ;
3) Переход Na + и HCO 3 - из крови в просвет канальца создает осмотический градиент, который вызывает осмотическое движение воды в панкреатические канальцы.
Состав нормального сока поджелудочной железы у человека:
1) катионы: Na + , K+, Mg2+, Ca 2+ ; pH ≈ 8,0;
2) анионы: НСО 3 - , Cl - , 8O 4 2- , HPO 4 2- ;
3) пищеварительные ферменты: протеазы, карбогидразы, липазы, нуклеазы;
4) альбумины;
5) глобулины.

Регуляция секреции сока поджелудочной железы.
Основные стимуляторы панкреатической секреции:
1) Ацетилхолин (АЦХ), высвобождается из окончаний блуждающих нервов, а также других нервов энтеральной нервной системы.
2) Гастрин, в большом количестве высвобождается во время желудочной фазы секреции желудочного сока.
3) Холецистокинин (ХЦК), секретируется слизистой 12-перстной кишки и начальной части тощей кишки при поступлении в них пищи.
4) Секретин, секретируется слизистой 12-перстной кишки в ответ на действие ХЦК, который секретируется слизистой 12-перстной кишки при поступлении в нее кислого химуса.
АЦХ, гастрин и ХЦК стимулируют в значительно большей степени ацинарные клетки, чем клетки протоков. Следовательно, они вызывают секрецию большого количества пищеварительных ферментов в малом количестве жидкости и минеральных солей. Без жидкости большинство ферментов временно сохраняется в ацинусах и протоках до тех пор, пока не увеличится секреция жидкости, чтобы смыть их в 12-перстную кишку.
Секретин – наоборот, стимулирует в основном секрецию бикарбоната натрия.
Панкреатическая секреция протекает в 3 фазы соответственно фазам секреции желудочного сока (мозговой, желудочной и кишечной).

Состав желчи

Желчь – это секрет гепатоцитов. Различают 2 процесса: желчеобразование и желчевыделение.
Желчеобразование . Желчеобразование происходит частично путём фильтрации компонентов желчи прямо из крови, и, частично, секрецией их гепатоцитами. Так, желчные кислоты образуются при участии шероховатого эндоплазматического ретикулума клеток печени, затем поступают в комплекс Гольджи и после этого в желчные протоки. Желчеобразование происходит постоянно, желчь собирается в желчный пузырь и там концентрируется. Кроме желчных кислот в желчи содержится холестерин, билирубин, биливердин, а также минеральные соли и белки, которые растворены в щелочном электролите, напоминающем сок поджелудочной железы.
Регуляция желчеобразования (холереза). Образование желчи идёт непрерывно и регулируется нервно-гуморальным путём. Ежедневно секретируется от 500 до 1200 мл желчи.
Нервная регуляция: вагус стимулиует, симпатические нервы тормозят холерез.
Гуморальная регуляция: стимулируют – желчные кислоты, секретин, ХЦК, гастрин, энтероглюкагон. Секретин может увеличивать в 2 раза (увеличивается секреция воды и бикарбонатов, а секреция желчных кислот не изменяется). Кроме этого, сам приём пищи, особенно жирной, стимулирует секрецию. Тормозит секрецию соматостатин.
Функции желчи. Благодаря наличию в желчи желчных кислот, она имеет большое значение в переваривании пищи и её всасывании. Желчные кислоты способствуют эмульгированию жира и делают его доступным действию липазы, а также способствуют всасыванию продуктов переваривания жираи жирорастворимых витаминов. С желчью экскретируются некоторые продукты из крови (билирубин и избыток холестерина).
Желчные кислоты (ЖК) . Ежедневно печёночные клетки образуют 0,5 г желчных кислот. Предшественником желчных кислот является холестерин, который поступает либо с пищей, либо образуется в печени. Холестерин превращается в холевую и хенодезоксихолевую кислоты. Затем эти кислоты связываются, главным образом, с глицином и, в меньшей степени, с таурином; в результате образуется глико- и таурохолевые кислоты.
Функция желчных кислот. Детергентное действие на жиры. При этом снижается поверхностное натяжение частиц, создаётся возможность их перемешивания в кишечнике и распад на более мелкие частицы. Это называется эмульгированием жира. Желчные кислоты способствуют всасыванию жирных кислот, моноглицеридов, липидов, холестерина и др. из кишечника. Это происходит благодаря образованию маленьких комплексов с этими липидами, которые называют мицеллами. Мицеллы хорошо растворимы. В такой форме жирные кислоты переносятся в слизистую кишечника, где они всасываются. Если желчные кислоты в кишечник не поступают, то до 40% жира выделяется с калом, а у человека развивается нарушение метаболизма.
Энтерогепатическая циркуляция желчных кислот. До 94% желчных кислот, выделяющихся в 12-перстную кишку, всасывается обратно в тонком кишечнике (в дистальных отделах подвздошной кишки) и через воротную вену поступают в печень. В печени они полностью захватываются гепатоцитами и снова секретируются в желчь.
Количество ежедневно секретируемой желчи в значительной степени зависит от желчных солей, участвующих в энтерогепатической циркуляции (2,5 г).
Если не давать возможность поступать желчи в 12-перстную кишку, т.е. желчные кислоты не могут всасываться в кишечнике, то в печени продукция желчных кислот возрастает в 10 раз.
Секреция холестерина. Желчные кислоты образуются печёночными клетками из холестерина и при секреции желчных кислот около 1/10 их части составляет холестерин. Это составляет 1-2 г в день.
Специфической функции в желчи холестерин не выполняет.
Отметим, что холестерин не растворим в воде, но желчные соли и лецитин в желчи соединяются с холестерином и образуют ультрамикроскопические мицеллы, которые растворимы. Следовательно, нарушение в желчи соотношения желчных кислот, холестерина и фосфолипидов может приводить к выпадению холестерина в осадок и образованию желчных камней.
Желчевыделение (холекинез). Желчевыделение – это процесс периодического опорожнения желчного пузыря. Это возможно, когда при сокращении стенок желчного пузыря расслабляются сфинктеры желчных протоков.


При поступлении пищи в 12-перстную кишку (особенно жирной) желчный пузырь вначале расслабляется, а затем мощно сокращается. После чего, он периодически то сокращается, то расслабляется, пока пища находится в 12-перстной кишке и в проксимальных отделах тощей кишки.
Вещества, которые усиливают сокращение желчного пузыря называются желчегонными. К ним относятся:
яичные желтки;
жир;
молоко, мясо, рыба.
Большое значение в регуляции сокращения желчного пузыря имеют нервные и гуморальные факторы.
Активация парасимпатической нервной системы усиливает сокращение желчного пузыря и расслабляет сфинктеры. Активация симпатической нервной системы приводит к сокращению сфинктеров.
К гуморальным факторам, стимулирующим сокращение желчного пузыря относится холецистокинин (ХЦК). Этот гормон APUD-системы секретируется слизистой 12-перстной кишки под влиянием продуктов переваривания белков и жиров, а также под влиянием бомбезина и гастрина.
Тормозят сокращения желчного пузыря: ВИП, глюкагон, кальцитонин, антихолецистокинин, панкреатический пептид.

Состав и свойства кишечного сока

В кишечнике пищеварения протекает под влиянием панкреатического сока, желчи и собственно кишечного сока. Кишечный сок секретируется бруннеровыми и либеркюновыми железами. Он представляет собой мутную, достаточно вязкую жидкость. Самостоятельного значения этот сок не имеет. Его можно получить при помощи фистулы Тири-Велла.


Полостной и мембранный гидролиз пищевых веществ
в различных отделах тонкой кишки


Полостное переваривание сменяется пристеночным или мембранным перевариванием, которое протекает в слое слизистых наслоений и в зоне щёточной каёмки энтероцитов.
На протяжении всей длины тонкого кишечника слизистая покрыта ворсинками. На 1 мм 2 слизистой располагается от 20 до 40 ворсинок. Ворсинка покрыта цилиндрическим эпителием. Внутри ворсинки находятся кровеносные и лимфатические капилляры. Мембраны эпителиоцитов, обращённые в просвет кишки, имеют цитоплазматические выросты, которые называются микроворсинками и образуют щеточную каёмку. Внешняя поверхность плазматической мембраны энтероцитов покрыта гликокаликсом. Гликокаликс состоит из множества мукополисахаридных нитей, связанных кальциевыми мостиками.
В гликокаликсе адсорбирован целый ряд пищеварительных ферментов. Именно на внешней (апикальной) поверхности кишечных клеток, образующей щёточную каёмку с гликокаликсом, осуществляется мембранное пищеварение.
Мембранное пищеварение было открыто А.М.Уголевым.
Мембранное пищеварение осуществляется ферментами, адсорбированными из полости тонкой кишки (ферменты, секретируемые поджелудочной железой), а также ферментами, синтезированными в кишечных клетках (энтероцитах) и встроенными в мембрану (фиксированные ферменты).
Адсорбированные ферменты связаны в основном со структурами гликокаликса, а собственно кишечные ферменты встроены в структуру мембраны энтероцитов.
Особенности мембранного пищеварения. В зону мембранного пищеварения проникают преимущественно небольшие молекулы, а бактерии в эту область попасть не могут. Следовательно, мембранное пищеварение происходит в стерильных условиях и отсутствует конкуренция за субстрат.
Согласно современным представлениям, усвоение пищевых веществ осуществляется в 3 этапа: полостное пищеварение – мембранное пищеварение – всасывание. Благодаря тому, что пристеночное пищеварение сопряжено с процессом всасывания, существует единственный пищеварительно-всасывательный конвейер.
Активность ферментов, адсорбированных на поверхности энтероцитов, выше, чем ферментов, расположенных в водной фазе.
Регуляция секреции сока тонкого кишечника. Приём пищи, местное механическое и химическое (продуктами переваривания) раздражение кишки усиливает секрецию сока с помощью холинэргических и пептидэргических механизмов. Большое значение имеют местные рефлексы, которые начинаются с тактильных или ирритантных рецепторов. Если ввести резиновую трубку, и раздражать слизистую тонкого кишечника, то выделяется жидкий сок.
Секретин, ХЦК, мотилин, ГИП и ВИП увеличивают секрецию кишечного сока. Дуокринин стимулирует секрецию бруннероых желез, а энтерокринин – либеркюновых; соматостатин тормозит секрецию. Однако, ведущим механизмом является местно-рефлекторный.

Пищеварение в толстом кишечнике

Остатки принятой пищи, не переваренные в тонком кишечнике (300-500 мл/сутки), поступает через илеоцекальную заслонку в слепую кишку. В толстом кишечнике путем всасывания воды происходит концентрирование химуса. Здесь продолжается также всасывание электролитов, водорастворимых витаминов, жирных кислот, углеводов.
В отсутствие механического раздражения, то есть при отсутствии в кишечнике химуса, выделяется очень небольшое количество сока. При раздражении сокообразование увеличивается в 8-10 раз. Сок содержит слизь и отторгнутые эпителиальные клетки. Кроме того, эпителиальные клетки слизистой оболочки выделяют бикарбонаты и другие неорганические соединения, создающие рН сока около 8,0. Переваривающая функция сока незначительна. Основное назначение сока – защита слизистой оболочки от механических, химических повреждений и обеспечение слабощелочной реакции.
Регуляция секреторных процессов в толстом кишечнике. В толстом кишечнике секреция определяется местными рефлексами, обусловленными механическим раздражением.
Микрофлора толстого кишечника. В толстом кишечнике питательные вещества подвергаются действию микрофлоры, так как под ее влиянием инактивируются ферменты энтерокиназа, щелочная фосфатаза, трипсин, амилаза. Микроорганизмы принимают участие в разложении парных желчных кислот, ряда органических веществ с образованием органических кислот, и их аммонийных солей, аминов и других веществ в обмене белков, фосфолипидов, желчных и жирных кислот, билирубина и холестерина.
Трудноперевариваемые белки в толстом кишечнике под влиянием гнилостных бактерий подвергаются гниению, в результате чего обрауются ядовитые вещества (летучие амины): индол, скатол, фенол, крезол, которые обезвреживаются в печени путём соединения с серной и глюкуроновой кислотами.
Нормальная микрофлора подавляет патогенные микроорганизмы и предохраняет организм от их размножения и внедрения. Нарушение её при заболеваниях или длительном введении антибактериальных препаратов нередко влечет за собой осложнения, вызываемые бурным размножением в кишечнике дрожжей, стафилококков, протея и других микроорганизмов.
Кишечная микрофлора синтезирует витамины группы В, К и др.
Возможно, что в нем синтезируются и др. вещества, важные для организма. Например, у «безмикробных крыс», выращенных в стерильных условиях, чрезвычайно увеличена в объеме слепая кишечника, резко снижено всасывание воды и аминокислот, что может быть причиной гибели.
На микрофлору кишечника влияют многие факторы: поступление микроорганизмов с пищей, характер диеты, свойства пищеварительных секретов (обладающие в той или иной мере выраженными бактерицидными свойствами), моторика кишечника (способствующая удалению из него микроорганизмов), наличие в слизистой оболочке кишечника иммуноглобулинов. Нормальная микрофлора контролируется антителами, выработка которых нарастает в ответ на увеличение того или иного вида микроорганизмов. В регуляции их адгезии на поверхности слизистой оболочки велико значение лейкоцитов.
Образование кишечных газов. В желудочно-кишечном тракте имеется 3 источника газа. Проглоченный воздух, включая тот воздух, который высвобождается из пищи и богатых углеводами продуктов, поступающих в желудок. Большинство этих газов выводится из желудка путем отрыжки или проходит вместе с химусом в тонкий кишечник.
Образование газа в толстом кишечнике происходит в результате деятельности бактерий, которые заселяют дистальный отдел подвздошной кишки и толстый кишечник. Небольшое количество газов попадает в толстый кишечник из крови.
По составу газы, образовавшиеся в толстом кишечнике, отличаются от газов тонкого кишечника. Малое количество газов тонкого кишечника это в основном проглоченный газ. В толстом кишечнике образуется большое количество газа, вплоть до 7-10 литров в день.
Газ в толстом кишечнике образуется при распаде не переваренных продуктов питания. Главным компонентом этого газа является СО 2 , СН 4 , Н 2 и азот. Так как эти все газы, кроме, азота способны диффундировать через слизистую оболочку кишечника, то объём газа может увеличиваться или уменьшаться до 600 мл/день.

Секреция в ротовой полости

В ротовой полости слюну вырабатывают 3 пары крупных и множество мелких слюнных желез. Подъязычная и мелкие железы выделяют секрет постоянно. Околоушная и подчелюстная - при стимуляции.

1) Время нахождения пищи в ротовой полости в среднем - 16-18 секунд.

2) Объем суточной секреции - 0,5-2 литра. Пищеварение полостное

3) Скорость секреции - от 0,25 мл/мин. до 200 мл/мин.

4) рН - 5,25-8,0. Оптимальная среда для действия ферментов - слабо щелочная.

Состав слюны:

А). Вода - 99,5%.

Б). Ионы К, Na, Ca, Mg, Fe, Cl, F, PO4, SO4, CO3.

В). Белки (альбумины, глобулины, свободные аминокислоты), азотсодержащие соединения небелковой природы (аммиак, мочевина, креатинин). Их содержание увеличивается при почечной недостаточности.

Г). Специфические вещества:

Муцин (мукополисахарид), придает слюне вязкость, формирует пищевой комок.

Лизоцим (муромидаза) вещество, обеспечивающее бактерицидным действием (собаки зализывают рану),

Нуклеаза слюны - антивирусное действие,

Иммуноглобулин А - связывает экзотоксины.

Д) активные лейкоциты - фагоцитоз (в см3 слюны - 4000 шт.).

Е) нормальная микрофлора ротовой полости, которая угнетает патологическую.

Ж). Ферменты слюны. Относятся к карбогидразам :

1. Альфа-амилаза - расщепляет крахмал на дисахариды.

2. Альфа-глюкозидаза - на сахарозу и мальтозу - расщепляют до моносахаров (активны в слабощелочной среде).

Секреция в желудке

Время нахождения пищи в желудке - 3-10 часов. Натощак в желудке находит ся около 50 мл содержимого (слюна, желудочный секрет и содержимое 12-перстной кишки) нейтральной рН (6,0).Объем суточной секреции - 1,5 - 2,0 л/сутки, рН - 0,8-1,5.

Железы желудка состоят из трех видов клеток : Главные клетки – вырабатывают ферменты; Париетальные (обкладочные) - НCl; Добавочные - слизь.

Клеточный состав желез изменяется в различных отделах желудка (в антральном - нет главных клеток, в пилорическом - нет обкладочных).

Пищеварение в желудке преимущественно полостное.

Состав желудочного сока

1. Вода - 99 - 99,5%. 2. Специфические вещества: Основной неорганический компонент - HCl (м.б. в свободном состоянии и связанная с белками). Роль HCl в пищеварении: 1. Стимулирует секрецию желез желудка.2. Активирует превращение пепсиногена в пепсин.3. Создает оптимальную рН для ферментов. 4. Вызывает денатурацию и набухание белков (легче расщепляются ферментами). 5. Обеспечивает антибактериальное действие желудочного сока, а следовательно, и консервирующий эффект пищи (нет процессов гниения и брожения). 6. Стимулирует моторику желудка.7. Участвует в створаживании молока.8. Стимулирует выработку гастрина и секретина (интестинальные гормоны). 9. Стимулирует секрецию энтерокиназы стенкой 12-перстной кишки.


3. Органические специфические вещества: 1. Муцин - предохраняет желудок от самопереваривания. Формы муцина (выделяется в 2-х формах):

а) прочно связанная с клеткой, предохраняет слизистую от самопереваривания;

б) непрочно связанная , покрывает пищевой комок.2. Гастромукопротеид (внутренний фактор Кастла ) - необходим для всасывания витамина В12.

3. Мочевина, мочевая кислота, молочная кислота .4. Антиферменты .

Ферменты желудочного сока:

1)В основном - протеазы, обеспечивают начальный гидролиз белков (до пептидов и небольшого количества аминокислот). Общее название - пепсины.

Вырабатываются в неактивной форме (в виде пепсиногенов). Активация происходит в просвете желудка с помощью HCl, которая отщепляет ингибирующий белковый комплекс. Последующая активация идет аутокаталитически (пепсином). Поэтому больные анацидным гастритом вынуждены до приема пищи принимать раствор HCl для запуска пищеварения. Пепсины расщепляют связи , образованные фенилаланином, тирозином, триптофаном и рядом других аминокислот.

1. Пепсин А - (оптимум рН - 1,5-2,0) расщепляет крупные белки на пептиды. Не вырабатывается в антральной части желудка. 2. Пепсин В (желатиназа)- расщепляет белок соединительной ткани - желатин (активен при рН меньше 5,0). 3. Пепсин С (гастриксин) - фермент, расщепляющий животные жиры, особенно гемоглобин (оптимум рН - 3,0-3,5). 4. Пепсин D (реннин) - створаживает казеин молока. В основном - у КРС, особенно много у телят - используется при изготовлении сыра (поэтому сыр на 99% усваивается организмом) У человека -химозин (вместе с соляной кислотой (створаживает молоко)). У детей - фетальный пепсин (оптимум рН -3,5), в 1,5 раза активнее створаживает казеин, чем у взрослых. Створоженные белки молока легче подвергаются дальнейшему перевариванию.

2)Липаза. В желудочном соке содержится липаза, активность которой невелика, она действует только на эмульгированные жиры (например, молока, рыбьего жира). Расщепляются жиры на глицерин и ВЖК при рН 6-8 (в нейтральной среде). У детей желудочная липаза расщепляет до 60% жиров молока.

3)Углеводы в желудке расщепляются за счет ферментов слюны (до их инактивации в кислой среде). Собственных карбогидраз желудочный сок не содержит.

Моторная функция желудка

В состоянии покоя через каждые 45-90 минут покоя наблюдаются периодические сокращения - по 20-50 минут (тощаковая периодическая деятельность ). Во время приема пищи и спустя некоторое время - стенка расслаблена ("рецептивное расслабление ").

В желудке есть кардиальный водитель ритма, откуда и идут перистальтические волны (скорость- 1 см/с, время - 1,5 с, волна охватывает - 1-2 см желудочной стенки).

В моторике желудка выделяют в основном 4 вида:1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация. 4. Маятникообразные движения

1. Тонус - благодаря тонусу желудок охватывает пищевой комок, каким бы маленьким он не был (за счет раздражения механорецепторов желудка).

2. Перистальтика - за счет сокращения продольной и циркулярной мускулатуры желудка пища передвигается из области кардии к пилѐрусу.

3. Ритмическая сегментация - сокращение циркулярной мускулатуры делит содержимое желудка на 3-4 сегмента. В каждом из них пищеварение идет во многом обособленно.

4. Маятникообразные движения - осуществляются в пределах сегмента за счет сокращения продольных и косых мышц желудка (участвуют в перемешивании пищи).

Благодаря сочетанию сокращений различных мышц желудка осуществляется перемешивание содержимого желудка и передвижение пищи.

Механизм перехода пищи из желудка в 12-перстную кишку

Для открытия пилорического сфинктера необходимы следующие условия:

раздражение механорецепторов перед сфинктером; отсутствие раздражения механорецепторов за сфинктером (основная причина); щелочная среда за сфинктером. При изменении этих условий (поступление порции кислого содержимого из желудка) сфинктер закрывается.

Сок поджелудочной железы

Железа смешанной секреции. Сок выделяет в 12-перстную кишку. Пищеварение в 12-перстной кишке преимущественно полостное. За сутки - 1,5-2,5 л панкреатического сока, рН - 7,5-8,8. Из солей - высокое содержание бикарбоната - обеспечивают нейтрализацию кислого желудочного содержимого.

Специфические вещества поджелудочного сока:

1. Панкреатический калликреин - близок по свойствам к плазменному, высвобождает каллидин, идентичный брадикинину, т.е. активируется моторика, расширяются сосуды тонкого кишечника. 2. Ингибитор трипсина - блокирует активацию трипсина внутри железы.

Ферменты панкреатического сока.

Панкреатический сок содержит все группы ферментов , воздействующих на белки, жиры, углеводы и нуклеиновые кислоты, т.е. уже в 12-п.к. идет глубокое расщепление пищи.

Пищеварительные ферменты поджелудочного сока

Протеазы поджелудочного сока (эндо- и экзопептидазы):

а) Эндопептидазы - действуют на молекулу изнутри, расщепляя внутренние пептидные связи.

1. Трипсин - расщепляет связи между аргинином и лизином.

Вырабатывается в виде неактивного трипсиногена, который активируется ферментом кишечного сока - энтерокиназой . В последующем активация трипсиногена и остальных протеаз поджелудочного сока с - за счет трипсина.

2. Химотрипсин - расщепляет связи тирозина, триптофана, фенилаланина. Вырабатывается в неактивной форме и в кишечнике активируется трипсином.

3. Панкреопептидаза Е (эластаза) - расщепляет эластические белки.

б) Экзопептидазы расщепляют конечные связи, освобождая аминокислоты одну за другой.

1. Карбоксипептидаза -отщепляет аминокислоты с "С"-конца пептида (СООН).

2. Аминопептидаза - отщепляет аминокислоты с "N"-конца пептида (NH3).

Т.о. уже в 12-п.к. происходит расщепление большого количества белка до аминокислот.

Липазы поджелудочного сока:

Липаза поджелудочной железы является основной липазой желудочно-кишечного тракта.

1. вырабатывается в неактивном состоянии,

2.активируется желчью (желчными кислотами); 3.действует на эмульгированные жиры, расщепляя их до глицерина и высших жирных кислот.

В отличие от желудка, где нет эмульгаторов, здесь есть желчь, которая хорошо эмульгирует жиры, т.е. 12-п.к. - основное место расщепления жиров.

Фосфолипаза А расщепляет фосфолипиды до жирных кислот.

Карбогидразы поджелудочного сока

1. Альфа-амилаза - расщепляет гликоген и крахмал до дисахаридов.

2. Альфа -глюкозидаза - расщепляет дисахариды до моносахаридов, то есть продолжается процесс, начатый в ротовой полости.

Нуклеазы (класс фосфодиэстераз):

1. Рибонуклеаза.

2. Дезоксирибонуклеаза.

Представляет собой сочетание секрета и экскрета. Объем суточной секреции - 0,5-1 л. рН - 7,8-8,6. Состав желчи:

1. Желчь не содержит ферментов .

2. Специфические вещества: желчные кислоты и желчные пигменты: билирубин - основной пигмент у человека, придает коричневую окраску; биливердин - в основном в желчи травоядных животных (зеленый цвет).

Роль желчи в пищеварении:

1. Участвует в смене желудочного пищеварения на кишечное (инактивация пепсина и кислого содержимого).

2. Создает оптимальную рН для ферментов pancreas, особенно - липаз.

3. Регулирует работу пилорического сфинктера (за счет щелочной рН).

4. Стимулирует моторику тонкого кишечника и деятельность кишечных ворсинок, что увеличивает скорость адсорбции веществ.

5. Участвует в пристеночном пищеварении, создавая благоприятные условия для фиксации ферментов на поверхности кишки.

6. Стимулирует секрецию pancreas.

7. Стимулирует желчеобразовательную функцию печени (положительная обратная связь).

8. Предупреждает развитие гнилостных процессов (бактериостатическое действие на кишечную микрофлору).

9.Желчные кислоты, как компонент желчи, играют в пищеварении ведущую роль: эмульгируют жиры, активируют поджелудочную липазу, обеспечивают всасывание нерастворимых в воде веществ, образуя с ними комплексы (жирные кислоты, холестерин, жирорастворимые витамины (А, D, Е, К) и соли Са+2), способствуют ресинтезу триглицеридов в энтероцитах.

Влияние блуждающих и симпатических нервов на деятельность сердца (хронотропное, инотропное, батмотропное, дромотропное и тонотропное влияния).Особенности тонического влияния центров блуждающих и симпатических нервов на деятельность сердца.

Эффекты, наблюдаемые при нервных или гуморальных влияниях на сердечную мышцу:

1. Хронотропный (влияние на частоту сердечных сокращений).

2. Инотропный (влияние на силу сердечных сокращений).

3. Батмотропный (влияние на возбудимость сердца).

4. Дромотропный (влияние на проводимость), может быть как положительным, так и отрицательным.

Влияние вегетативной нервной системы.

1. Парасимпатическая нервная система:

а) перерезка волокон ПСНС, иннервирующих сердце - «+» хронотропный эффект (устранение тормозящего вагусного влияния, центры n.vagus исходно находятся в тонусе);

б) активация ПСНС, иннервирующих сердце - «-» хроно- и батмотропный эффект, вторичный «-» инотропный эффект.

2. Симпатическая нервная система:

а) перерезка волокон СНС - нет изменений в деятельности сердца (симпатические центры, иннервирующие сердце, исходно не обладают спонтанной активностью);

б) активация СНС - «+» хроно-, ино-, батмо- и дромотропный эффект.

Рефлекторная регуляция сердечной деятельности.

Особенность: изменение деятельности сердца происходит при воздействии раздражителя на любую рефлексогенную зону. Это связано с тем, что сердце, как центральный, наиболее лабильный компонент системы кровообращения, принимает участие при любой срочной адаптации.

Рефлекторная регуляция сердечной деятельности осуществляется за счет собственных рефлексов, формируемых с рефлексогенных зон сердечно-сосудистой системы, и сопряженных рефлексов, формирование которых связано с воздействием на другие, не связанные с системой кровообращения рефлексогенные зоны.

1.Основные рефлексогенные зоны сосудистого русла:

1) дуга аорты (барорецепторы);

2) каротидный синус (место разветвления общей сонной артерии на наружную и внутреннюю) (хеморецепторы);

3) устье полых вен (механорецепторы);

4) емкостные кровеносные сосуды (волюморецепторы).

2.Внесосудистые рефлексогенные зоны. Основные рецепторы рефлексогенных зон сердечнососудистой системы:

Барорецепторы и волюморецепторы, реагирующие на изменение АД и объема крови (относятся к группе медленно адаптирующихся рецепторов, реагируют на деформацию стенки сосуда, вызванную изменением АД и/или объема крови).

Барорефлексы. Повышение АД приводит к рефлекторному урежению сердечной деятельности, снижению ударного объема (парасимпатическое влияние). Падение давления вызывает рефлекторное увеличение ЧСС и повышение УО (симпатическое влияние).

Рефлексы с волюморецепторов. Уменьшение ОЦК ведет к увеличению ЧСС (симпатическое влияние).

1.Хеморецепторы, реагирующие на изменение концентрации кислорода и углекислого газа крови. При гипоксии и гиперкапнии ЧСС увеличивается (симпатическое влияние). Избыток кислорода вызывает уменьшение ЧСС.

2.Рефлекс Бейнбриджа. Растяжение устий полых вен кровью вызывает рефлекторное увеличение ЧСС (торможение парасимпатического влияния).

Рефлексы с внесосудистых рефлексогенных зон.

Классические рефлекторные влияния на сердце.

1.Рефлекс Гольца. Раздражение механорецепторов брюшины вызывает урежение сердечной деятельности. Такой же эффект при механическом воздействии на солнечное сплетение, сильном раздражении Холодовых рецепторов кожи, сильных болевых воздействиях (парасимпатическое влияние).

2.Рефлекс Данини-Ашнера. Надавливание на глазные яблоки вызывает урежение сердечной деятельности (парасимпатическое влияние).

3. Двигательная активность, несильные болевые раздражения, активация тепловых рецепторов вызывают увеличение ЧСС (симпатическое влияние).



Понравилась статья? Поделитесь ей