Контакты

Нейронные структуры головного мозга человека и животных. Какое лекарство восстанавливает нейроны головного мозга? Нейроны и нервная ткань. Стволовые клетки как метод лечения

В этой статье мы поговорим про нейроны мозга. Нейронами коры головного мозга является структурно-функциональная единица всей общей нервной системы.

Такая клетка обладает весьма сложным строением, высокой специализацией, а если говорить о ее структуре, то состоит клетка из ядра, тела и отростков. В организме человека в общей сложности существует приблизительно 100 миллиардов таких клеток.

Функции

Любые клетки, которые расположены в человеческом организме обязательно отвечают за те или иные его функции. Не исключением являются и нейроны.

Они, как и другие клетки головного мозга обязаны обеспечивать поддержание своей собственной структуры и некоторых функций, а также приспосабливаться к возможным изменениям условий, а соответственно осуществлять регулирующие процессы на клетки, которые находятся в непосредственной близости.

Главной функцией нейронов считается переработка важной информации, а именно ее получение, проведение, а потом и передача другим клеткам. Информация поступает благодаря синапсам, обладающих рецепторами сенсорных органов или какими-то иными нейронами.

Также в некоторых ситуациях передача информации может происходить и, непосредственно, из внешней среды при помощи, так называемых, специализированных дендритов. Проводится информация сквозь аксоны, а ее передача осуществляется синапсами.

Строение

Тело клетки . Эта часть нейрона считается самой главной и состоит из цитоплазмы и ядра, которые создают протоплазму, снаружи она ограничивается своеобразной мембраной, состоящей из двойного слоя липидов.

В свою очередь такой слой липидов, который еще принято называть биолипидным слоем, состоит из хвостов гидрофобной формы и таких же головок. Нужно отметить, что такие липиды находятся друг к другу хвостами, и таким образом создают некий своеобразный гидрофобный слой, который способен пропускать через себя исключительно вещества, растворяющиеся в жирах.

На поверхности мембраны расположены белки, которые имеют форму глобул. На таких мембранах расположены наросты полисахаридов, с помощью которых у клетки появляется хорошая возможность воспринимать раздражения внешних факторов. Также здесь присутствуют и интегральные белки, которые фактически насквозь пронизывают всю поверхность мембраны, а в них, в свою очередь, располагаются ионные каналы.

Нейроновые клетки коры головного мозга состоят из тел, диаметр колеблется в пределах от 5 до 100 мкм, которые содержат в себе ядро (имеющее множество ядерных пор), а также некие органеллы, в том числе и достаточно сильно развивающийся ЭПР шероховатой формы, обладающий активными рибосомами.

Также в состав каждой отдельной клетки нейрона входят и отростки. Существует два главных типа отростков – аксон и дендриты. Особенностью нейрона является и то, что он имеет развитый цитоскелет, который собственно способен проникать в его отростки.

Благодаря цитоскелету постоянно поддерживается необходимая и стандартная форма клетки, а его нити выполняют роль своеобразных «рельсов», с помощью которых транспортируются органеллы и вещества, которые упакованы в пузырьки мембран.

Дендриты и аксон . Аксон имеет вид достаточно длинного отростка, который отлично приспособлен к процессам, направленных на возбуждение нейрона от человеческого тела.

Дендриты выглядят совсем по-другому, уже хотя бы потому, что их длина гораздо меньшая, а также у них наблюдаются слишком развитые отростки, которые исполняют роль главного участка, где начинают появляться тормозные синапсы, способные таким образом влиять на нейрон, что в течение короткого периода времени нейроны человека возбуждаются.

Как правило, нейрон состоит из большего количество дендритов, в то время. Как присутствует всего один аксон. Один нейрон обладает связями с множеством других нейронов, иногда подобных связей существует около 20 000.

Делятся дендриты дихотомическим способом, в свою очередь аксоны способны давать коллатерали. В узлах ветвления практически в каждом нейроне находятся несколько митохондрий.

Стоит отметить также и тот факт, что у дендритов нет никакой миелиновой оболочки в то время, как аксоны могут таким органом располагать.

Синапсом называют место, где осуществляется контакт между двумя нейронами или же между эффекторной клеткой, которая получает сигнал и непосредственно нейроном.

Главной функцией такого составляющего нейрона является передача нервных импульсов между разными клетками, при этом частота сигнала может меняться в зависимости от темпов и типов передачи данного сигнала.

Нужно отметить, что некоторые синапсы способны вызывать деполяризацию нейрона, в тот момент как другие наоборот гиперполяризацию. Первый тип нейронов называют возбуждающими, а второй – тормозящими.

Как правило, для того, чтобы начался процесс возбуждения нейрона, в качестве раздражителей должны выступить сразу несколько возбуждающих синапсов.

Классификация

Согласно количеству и локализации дендритов, а также месторасположению аксона, нейроны головного мозга делятся на униполярные, биполярные, безаксонные, мультиполярные и псевдоуниполярные нейроны. Теперь хотелось бы рассмотреть каждый из таких нейронов более детально.

Униполярные нейроны обладают одним небольшим отростком, и чаще всего находятся в сенсорном ядре так называемого тройничного нерва, расположенного в средней части мозга.

Безаксонные нейроны имеют маленькие размеры и локализованы в непосредственной близости от спинного мозга, а именно в межпозвоночных галлиях и не имеют совершенно никаких делений отростков на аксоны и дендриты; все отростки имеют практически одинаковый вид и каких-то серьезных отличий между ними не существует.

Биполярные нейроны состоят из одного дендрита, который находятся в специальных сенсорных органах, в частности в сетке глаза и луковице, а также только одного аксона;

Мультиполярные нейроны имеют в собственной структуре несколько дендритов и один аксон, и находятся в центральной нервной системе;

Псевдоуниполярные нейроны считаются своеобразными в своем роде, так как сначала отходит от главного тела всего один отросток, который постоянно делится на несколько других, а встречаются подобные отростки исключительно в спинальных ганглиях.

Существует также классификация нейронов согласно функциональному принципу. Так, по таким данным различают эфферентные нейроны, афферентные, двигательные, а также интернейроны.

Эфферентные нейроны имеют в своем составе неультиматные и ультиматные подвиды. Кроме того, к ним относятся и первичные клетки чувствительных органов человека.

Афферентные нейроны . К нейронам данной категории относятся как первичные клетки чувствительных человеческих органов, так и псевдоуниполярные клетки, которые обладают дендритами со свободными окончаниями.

Ассоциативные нейроны . Главной функцией этой группы нейронов является осуществление связи между афферентными эфферентными видами нейронов. Такие нейроны делят на проекционные и комиссуральные.

Развитие и рост

Нейроны начинают развиваться из небольшой клетки, которая считается его предшественницей и перестает делиться еще до того момента, как образуются первые собственные отростки.

Нужно отметить, что в нынешнее время ученые еще не до конца изучили вопрос, касающейся развития и роста нейронов, но постоянно работают в данном направлении.

В большинстве случаев сначала начинают развиваться аксоны, а после этого дендриты. На самом конце отростка, который начинает уверенно развиваться образовывается утолщение специфической и несвойственной для такой клетки формы, и таким образом прокладывается путь сквозь ткань, окружающую нейроны.

Такое утолщение принято называть конусом роста нервных клеток. Данный конус состоит из некоторой уплощенной части отростка нервной клетки, которая в свою очередь создана из большого количества довольно тонких шипов.

Микрошипики обладают толщиной от 0,1 до 0,2 микромикрон, а в длину могут достигать отметки и 50 мкм. Если говорить непосредственно о плоской и широкой области конуса, то надо отметить, что ей свойственно менять собственные параметры.

Между микрошипами конуса присутствуют некоторые промежутки, которые полностью покрыты складчатой мембраной. Микрошипики двигаются на постоянной основе, благодаря чему, в случае поражения, нейроны восстанавливаются и приобретают необходимую форму.

Хотелось бы отметить, что каждая отдельная клетка движется по-своему, так если одна из них будет удлиняться или расширяться, то вторая может отклоняться в разные стороны или даже прилипать к субстрату.

Конус роста полностью заполнен мембранными пузырьками, которые характеризируются слишком мелкими размерами и неправильной формой, а также соединениями друг с другом.

Кроме того, в конусе роста находятся нейрофиламенты, митохондрии, а также микротрубочки. Такие элементы имеют способность двигаться с огромной скоростью.

Если сравнивать скорости передвижения элементов конуса и непосредственно самого конуса, то необходимо подчеркнуть, что они приблизительно одинаковы, а поэтому можно сделать вывод, что в период роста не наблюдается ни сборки, ни каких-то нарушений микротрубочек.

Наверное, новый мембранный материал начинает добавляться уже в самом конце процесса. Конус роста – это участок довольно быстрого эндоцитоза и экзоцитоза, что подтверждают большое количество пузырьков, которые здесь расположены.

Как правило, росту дендритов и аксонов предшествует момент миграции нейронных клеток, то есть тогда, когда незрелые нейроны фактически расселяются и начинают существовать на одном и том же постоянном месте.

озг, восстанови себя

Н а протяжении всей своей 100-летней истории нейронаука придерживалась догмы: мозг взрослого человека не подвержен изменениям. Считалось, что человек может терять нервные клетки, но не обретать новые. Действительно, если бы мозг был способен к структурным изменениям, как бы сохранялась ?

Кожа, печень, сердце, почки, легкие и кровь могут образовывать новые клетки для замены поврежденных. Вплоть до недавнего времени специалисты считали, что такая способность к регенерации не распространяется на центральную нервную систему, состоящую из головного и .

Однако за последние пять лет нейробиологи открыли, что мозг все же меняется в течение жизни: происходит образование новых клеток, позволяющих справиться с возникающими трудностями. Такая пластичность помогает мозгу восстанавливаться после травмы или заболевания, увеличивая свои потенциальные возможности.

Нейробиологи на протяжении десятков лет ищут способы улучшить состояние мозга. Стратегия лечения основывалась на восполнении недостатка нейромедиаторов - химических веществ, передающих сообщения нервным клеткам (нейронам). При болезни Паркинсона, например, мозг больного теряет способность вырабатывать нейромедиатор дофамин, поскольку производящие его клетки гибнут. Химический «родственник» дофамина, L-Допа, может временно облегчить состояние больного, но не излечить его. Для замены нейронов, погибающих при таких неврологических заболеваниях, как болезни Гентингтона и Паркинсона, и при травмах , нейробиологи пытаются имплантировать стволовые клетки, полученные из эмбрионов. В последнее время исследователи заинтересовались нейронами, полученными из эмбриональных стволовых клеток человека, которые при определенных условиях можно заставить образовывать в чашках Петри любые типы клеток человеческого организма.

Несмотря на то что у стволовых клеток много преимуществ, очевидно, следует развивать способности взрослой нервной системы к самовосстановлению. Для этого необходимо ввести вещества, стимулирующие мозг к образованию собственных клеток и восстановлению поврежденных нервных цепей.

Новорожденные нервные клетки

В 1960 - 70-х гг. исследователи пришли к выводу, что центральная нервная система млекопитающих способна к регенерации. Первые эксперименты показали, что основные ветви нейронов взрослого головного и - аксоны могут восстанавливаться после повреждения. Вскоре было обнаружено рождение новых нейронов в мозге взрослых птиц, обезьян и людей, т.е. нейрогенез.

Возникает вопрос: если центральная нервная система может образовывать новые , способна ли она восстанавливаться в случае болезни или травмы? Для того чтобы ответить на него, необходимо понять, как происходит нейрогенез во взрослом мозге и каким образом можно его .

Рождение новых клеток происходит постепенно. Так называемые мультипотентные стволовые клетки в мозге периодически начинают делиться, давая начало другим стволовым клеткам, которые могут вырасти в нейроны или опорные клетки, называемые . Но для созревания новорожденные клетки должны избегать влияния мультипотентных стволовых клеток, что удается лишь половине из них - остальные гибнут. Такое расточительство напоминает процесс, происходящий в организме до рождения и в раннем детстве, когда возникает больше нервных клеток, чем необходимо для образования мозга. Выживают только те из них, которые формируют действующие связи с другими.

Станет ли уцелевшая молодая клетка нейроном или глиальной клеткой, зависит от того, в каком участке мозга она окажется и какие процессы будут происходить в этот период. Новому нейрону требуется более месяца, чтобы начать полноценно функционировать. посылать и принимать информацию. Таким образом. нейрогенез представляет собой не одномоментное событие. а процесс. который регулируется веществами. называемыми факторами роста. Например, фактор, названный «звуковой еж» (sonic hedgehog), обнаруженный впервые у насекомых, регулирует способность незрелых нейронов к пролиферации. Фактор notch и класс молекул. названных морфогенетическими протеинами кости, видимо, определяют, станет ли новая клетка глиальной или нервной. Как только это произойдет. другие факторы роста. такие как мозговой нейротрофический фактор (BDNF). нейротрофины и инсулинподобный фактор роста (IGF), начинают поддерживать жизнедеятельность клетки, стимулируя ее созревание.

Место действия

Новые нейроны возникают во взрослом мозге млекопитающих не случайно и. по всей видимости. образуются только в заполненных жидкостью пустотах в переднем мозге - в желудочках, а также в гиппокампе - структуре, спрятанной глубоко в мозге. имеющей форму морского конька. Нейробиологи доказали, что клетки, которым суждено стать нейронами. перемещаются из желудочков в обонятельные луковицы. которые получают информацию от клеток, расположенных в слизистой носа и чувствительных к . Никто точно не знает, почему обонятельной луковице требуется столько новых нейронов. Легче предположить, зачем они нужны гиппокампу: поскольку эта структура важна для запоминания новой информации, дополнительные нейроны, вероятно. способствуют упрочению связей между нервными клетками, повышая способность мозга обрабатывать и хранить сведения.

Процессы нейрогенеза также обнаружены за пределами гиппокампа и обонятельной луковицы, например, в префронтальной коре - обители интеллекта и логики. а также в других областях взрослого головного и спинного мозга. Последнее время появляются все новые подробности о молекулярных механизмах, управляющих нейрогенезом, и о химических стимулах, регулирующих его. и мы вправе надеяться. что со временем можно будет искусственно стимулировать нейрогенез в любой части мозга. Зная, как факторы роста и локальное микроокружение управляют нейрогенезом, исследователи рассчитывают создать методы лечения, позволяющие восстановить больной или поврежденный мозг.

С помощью стимулирования нейрогенеза можно улучшить состояние пациента при некоторых неврологических заболеваниях. Например. причина - закупорка сосудов головного мозга, в результате чего из-за недостатка кислорода гибнут нейроны. После инсульта в гиппокампе начинает развиваться нейрогенез, стремящийся «вылечить» поврежденную ткань мозга с помощью новых нейронов. Большинство новорожденных клеток гибнет, однако некоторые успешно мигрируют к поврежденному участку и превращаются в полноценные нейроны. Несмотря на то что для компенсации повреждений при тяжелом инсульте этого недостаточно. нейрогенез может помочь мозгу после микроинсультов,которые часто проходят незамеченными. Сейчас нейробиологи пытаются применять васкуло-эпидермальный фактор роста (VEGF) и фактор роста фибробластов (FGF) для усиления естественного восстановления.

Оба вещества представляют собой крупные молекулы, которые с трудом преодолевают гематоэнцефалический барьер, т.е. сеть тесно переплетенных клеток, выстилающих кровеносные сосуды мозга. В 1999 г. биотехнологическая компания Wyeth-Ayerst Laboratories and Scios из Калифорнии приостановила клинические испытания FGF применяемого для . поскольку его молекулы не попадали в мозг. Некоторые исследователи пытались решить эту задачу, соединяя молекулу FGF с другой, которая вводила клетку в заблуждение и заставляла ее захватывать весь комплекс молекул и переносить его в ткань мозга. Другие ученые методами генной инженерии создавали клетки, вырабатывающие FGF. и трансплантировали их в мозг. Пока подобные эксперименты проводились лишь на животных.

Стимулирование нейрогенеза может оказаться действенным при лечении депрессии. главной причиной которой (помимо генетической предрасположенности) считается хронический . ограничивающий, как известно. количество нейронов в гиппокампе. Многие из выпускаемых лекарственных средств. показанных при депрессии. в том числе прозак. усиливают нейрогенез у животных. Интересно, что для снятия депрессивного синдрома с помощью этого препарата требуется один месяц - столько же. сколько и для осуществления нейрогенеза. Возможно. депрессия отчасти вызвана замедлением данного процесса в гиппокампе. Последние клинические исследования с применением методов визуализации нервной системы подтвердили. что у пациентов с хронической депрессией гиппокамп меньше, чем у здоровых людей. Длительное применение антидепрессантов. похоже. подстегивает нейрогенез: у грызунов. которым давали эти препараты на протяжении нескольких месяцев. в гиппокампе возникали новые нейроны.

Нейрональные стволовые клетки дают начало новым клеткам мозга. Они периодически делятся в двух основных областях: в желудочках (фиолетовый цвет), которые заполнены спинномозговой жидкостью, питающей центральную нервную систему, и в гиппокампе (голубой цвет) - структуре, необходимой для обучения и памяти. При пролиферации стволовых клеток (внизу) образуются новые ствоповые клетки и клетки-предшественники, которые могут превратиться либо в нейроны, либо в поддерживающие клетки, называемые глиальными (астроциты и дендроциты). Однако дифференцировка новорожденных нервных клеток может произойти только после того, как они уйдут прочь от своих предков (красные стрелки), что удается в среднем лишь половине из них, а остальные гибнут. Во взрослом мозге новые нейроны были обнаружены в гиппокампе и обонятельных луковицах, необходимых для восприятия запахов. Ученые надеются заставить взрослый мозг восстанавливаться, вызывая деление и развитие нейрональных стволовых клеток или клеток-предшественников там и тогда, где и когда это необходимо.

Стволовые клетки как метод лечения

Потенциальным средством для восстановления поврежденного мозга исследователи считают два типа стволовых клеток. Во-первых, нейрональные стволовые клетки взрослого мозга: редкие первичные клетки, сохранившиеся от ранних стадий эмбрионального развития, обнаруженные как минимум в двух областях мозга. Они могут делиться на протяжении всей жизни, давая начало новым нейронам и поддерживающим клеткам, называемым глией. Ко второму типу относятся человеческие эмбриональные стволовые клетки, выделенные из зародышей на очень ранней стадии развития, когда весь эмбрион состоит примерно из ста клеток. Такие эмбриональные стволовые клетки могут давать начало любым клеткам организма.

В большинстве исследований производится наблюдение за ростом нейрональных стволовых клеток в культуральных чашках. Они могут там делиться, их можно генетически пометить и затем трансплантировать назад в нервную систему взрослого индивидуума. В экспериментах, которые пока проводились только на животных, клетки хорошо приживаются и могут дифференцироваться в зрелые нейроны в двух областях мозга, где образование новых нейронов происходит и в норме, - в гиппокампе и в обонятельных луковицах. Однако в других областях нейрональные стволовые клетки, взятые из взрослого мозга, не торопятся становиться нейронами, хотя могут стать глией.

Проблема со взрослыми нейрональными стволовыми клетками состоит в том, что они пока еще незрелые. Если взрослый мозг, в который их пересадили, не будет вырабатывать сигналы, необходимые для стимуляции их развития в определенный тип нейронов - например в гиппокампальный нейрон, - они либо погибнут, либо станут глиальной клеткой, либо так и останутся недифференцированной стволовой клеткой. Для решения этого вопроса необходимо определить, какие биохимические сигналы заставляют нейрональную стволовую клетку стать нейроном данного типа, и затем направить развитие клетки по такому пути прямо в культуральной чашке. Ожидается, что после трансплантации в заданный участок мозга эти клетки останутся нейронами того же типа, сформируют связи и начнут функционировать.

Устанавливая важные связи

Поскольку проходит около месяца с момента деления нейрональной стволовой клетки до тех пор, пока ее потомок не включится в функциональные цепи мозга, роль этих новых нейронов в , вероятно, определяется не столько родословной клетки, сколько тем, как новые и уже существующие клетки соединяются друг с другом (образуя синапсы) и с существующими нейронами, формируя нервные цепи. В процессе синаптогенеза так называемые шипики на боковых отростках, или дендритах, одного нейрона соединяются с основной ветвью, или аксоном, другого нейрона.

Как показывают недавние исследования, дендритные шипики (внизу) могут менять свою форму в течение нескольких минут. Это свидетельствует о том, что синаптогенез может лежать в основе обучения и памяти. Одноцветные микро-фотографии мозга живой мыши (красная, желтая, зеленая и голубая) были сделаны с интервалом в одни сутки. Многоцветное изображение (крайнее справа) представляет собой те же фотографии, наложенные друг на друга. Участки, не претерпевшие изменений, выглядят практически белыми.

Помоги мозгу

Еще одно заболевание, провоцирующее нейрогенез, - болезнь Альцгеймера. Как показали недавние исследования, в органах мыши. которой были введены гены человека, пораженные болезнью Альцгеймера. обнаружены различные отклонения нейрогенеза от нормы. В результате такого вмешательства у животного в избытке вырабатывается мутантная форма предшественника человеческого амилоидного пептида, и уровень нейронов в гиппокампе падает. А гиппокамп мышей с мутантным геном человека. кодирующим белок пресенилин. обладал малым количеством делящихся клеток и. соответственно. меньшим числом выживших нейронов. Введение FGF непосредственно в мозг животных ослабляло тенденцию; следовательно. факторы роста могут стать хорошим средством лечения этого разрушительного заболевания.

Следующий этап исследований - факторы роста, управляющие различными стадиями нейрогенеза (т.е. рождением новых клеток, миграцией и созреванием молодых клеток), а также факторы, тормозящие каждый этап. Для лечения таких заболеваний, как депрессия, при которой снижается количество делящихся клеток, необходимо найти фармакологические вещества или другие методы воздействия. усиливающие пролиферацию клеток. При эпилепсии, видимо. новые клетки рождаются. но затем мигрируют в ложном направлении, и нужно понять. как направить «заблудшие» нейроны по правильному пути. При злокачественной глиоме мозга глиальные клетки пролиферируют и образуют смертельно опасные разрастающиеся опухоли. Хотя причины возникновения глиомы еще не ясны. некоторые полагают. что она возникает в результате неконтролируемого разрастания стволовых клеток мозга. Лечить глиому можно с помощью природных соединений. регулирующих деление таких стволовых клеток.

Для лечения инсульта важно выяснить. какие факторы роста обеспечивают выживание нейронов и стимулируют превращение незрелых клеток в здоровые нейроны. При таких заболеваниях. как болезнь Гентингтона. амиотрофический боковой склероз (АЛС) и болезнь Паркинсона (когда гибнут совершенно конкретные типы клеток, что ведет к развитию специфических когнитивных или моторных симптомов). данный процесс происходит наиболее часто, поскольку клетки. с которыми связаны эти болезни, располагаются в ограниченных областях.

Возникает вопрос: как управлять процессом нейрогенеза при том или ином типе воздействия, чтобы контролировать количество нейронов, поскольку их избыток также представляет опасность? Например, при некоторых формах эпилепсии нейрональные стволовые клетки продолжают делиться даже после того, как новые нейроны уже утрачивают способность устанавливать полезные связи. Нейробиологи предполагают, что «неправильные» клетки остаются недозрелыми и оказываются в ненужном месте. формируя т.н. фикальные корковые дисплазии (ФКД), генерирующие эпилептиформные разряды и вызывая эпилептические припадки. Не исключено, что введение факторов роста при инсульте. болезни Паркинсона и других заболеваниях может заставить нейрональные стволовые клетки делиться чересчур быстро и привести к сходным симптомам. Поэтому исследователи должны сначала изучить применение факторов роста для индукции рождения, миграции и созревания нейронов.

При лечении травм спинного мозга, АЛС или необходимо заставить стволовые клетки производить олигодендроциты, одну из разновидностей глиальных клеток. Они необходимы для коммуникации нейронов друг с другом. поскольку изолируют длинные аксоны, проходящие от одного нейрона к другому. предотвращая рассеяние проходящего по аксону электрического сигнала. Известно, что стволовые клетки в спинном мозге обладают способностью время от времени производить олигодендроциты. Исследователи применили факторы роста для стимулирования данного процесса у животных с травмой спинного мозга и получили положительные результаты.

Зарядка для мозга

Одна из важных особенностей нейрогенеза в гиппокампе состоит в том, что персональный индивидуума может влиять на скорость деления клеток, количество выживших молодых нейронов и их способность встраиваться в нервную сеть. Например. когда взрослых мышей переселяют из обычных и тесных клеток в более удобные и просторные. у них происходит значительное усиление нейрогенеза. Исследователи обнаружили, что тренировки мышей в колесе для бега достаточно для того, чтобы удвоить количество делящихся клеток в гиппокампе, что ведет к резкому увеличению числа новых нейронов. Интересно, что регулярная физическая нагрузка может снять депрессию у людей. Возможно. это происходит благодаря активации нейрогенеза.

Если ученые научатся управлять нейрогенезом, то наши представления о заболеваниях и травмах мозга кардинально изменятся. Для лечения можно будет использовать вещества, избирательно стимулирующие определенные этапы нейрогенеза. Фармакологическое воздействие будет сочетаться с физиотерапией, усиливающей нейрогенез и стимулирующей определенные области мозга к встраиванию в них новых клеток. Учет взаимосвязей между нейрогенезом и умственной и физической нагрузками позволит снизить риск возникновения неврологических заболеваний и усилить природные репаративные процессы в мозге.

Путем стимуляции роста нейронов в мозге здоровые люди получат возможность улучшить состояние своего организма. Однако вряд ли им понравятся инъекции факторов роста, с трудом проникающих сквозь гематоэнцефалический барьер после введения в кровоток. Поэтому специалисты ищут препараты. которые можно было бы выпускать в виде таблеток. Подобное лекарство позволит стимулировать работу генов, кодирующих факторы роста, непосредственно в мозге человека.

Улучшить деятельность мозга возможно также путем генной терапии и трансплантации клеток: искусственно выращенные клетки, производящие конкретные факторы роста. можно имплантировать в определенные области мозга человека. Также предлагается вводить в организм человека гены, кодирующие производство различных факторов роста, и вирусы. способные доставить эти гены до нужных клеток мозга.

Пока не ясно. какой из методов окажется наиболее перспективным. Исследования, проведенные на животных, показывают. что применение факторов роста может нарушить нормальное функционирование мозга. Процессы роста могут вызвать образование опухолей, а трансплантированные клетки - выйти из под контроля и спровоцировать развитие рака. Такой риск может быть оправдан только при тяжелых формах болезни Гентингтона. Альцгеймера или Паркинсона.

Оптимальный способ стимулирования деятельности мозга - интенсивная интеллектуальная деятельность в сочетании со здоровым образом жизни: физическая нагрузка. хорошее питание и полноценный отдых. Экспериментально подтверждается и то. что на связи в мозге влияет окружающая среда. Возможно. когда-нибудь в жилых домах и офисах люди будут создавать и поддерживать специально обогащенную среду для улучшения функционирования мозга.

Если удастся понять механизмы самовосстановления нервной системы, то в скором будущем исследователи овладеют методами. позволяющими использовать собственные ресурсы мозга для его восстановления и совершенствования.

Фред Гейдж

(В мире пауки, № 12, 2003)

Чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей: сомы (тела) и многочисленных разветвленных отростков. У каждого нейрона есть два типа отростков: аксон, по которому возбуждение передается от нейрона к другому нейрону, и многочисленные дендриты (от греч. дерево), на которых заканчиваются (от греч. контакт) аксоны от других нейронов. Нейрон проводит возбуждение только от дендрита к аксону.

Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам, мышечным, железистым и другим клеткам.

На рис. 2.3 показана схема нейрона, на которой легко прослеживаются его основные части.

Нейроны разных отделов мозга выполняют очень разнообразную работу, и в соответствии с этим форма нейронов из разных частей головного мозга также многообразна (рис. 2.4). Нейроны, расположенные на выходе нейронной сети какой‑то структуры, имеют длинный аксон, по которому возбуждение покидает данную мозговую структуру. Например, нейроны двигательной коры головного мозга, так называемые пирамиды Беца (названные в честь киевского анатома Б. Беца, впервые их описавшего в середине XIX века), имеют у человека аксон около 1 м, он соединяет двигательную кору больших полушарий с сегментами спинного мозга. По этому аксону передаются «двигательные команды», например «пошевелить пальцами ноги». Как возбуждается нейрон? Основная роль в этом процессе принадлежит мембране, которая отделяет цитоплазму клетки от окружающей среды. Мембрана нейрона, как и любой другой клетки, устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение (рис. 2.5): слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7-11 нм. Чтобы представить эти размеры, вообразите, что толщина вашего волоса уменьшилась в 10 тыс. раз. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов: натрия, калия, кальция, хлора. Это так называемые ионные каналы. Другие частицы прикреплены на внешней поверхности мембраны и состоят не только из молекул белка, но и из полисахаридов. Это рецепторы для молекул биологически активных веществ, например медиаторов, гормонов и др. Часто в состав рецептора, кроме места для связывания специфической молекулы, входит и ионный канал.

Главную роль в возбуждении нейрона играют ионные каналы мембраны. Эти каналы бывают двух видов: одни работают постоянно и откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия. Благодаря работе этих каналов (их называют еще насосными каналами или ионным насосом ), постоянно потребляющих энергию, в клетке создается разность концентраций ионов: внутри клетки концентрация ионов калия примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая - примерно в 50 раз меньше, чем снаружи клетки. Свойство мембраны постоянно поддерживать разность ионных концентраций между цитоплазмой и окружающей средой характерно не только для нервной, но и для любой клетки организма. В результате между цитоплазмой и внешней средой на мембране клетки возникает потенциал: цитоплазма клетки заряжается отрицательно на величину около 70 мВ относительно внешней среды клетки. Измерить этот потенциал можно в лаборатории стеклянным электродом, если в клетку ввести очень тонкую (меньше 1 мкм) стеклянную трубочку, заполненную раствором соли. Стекло в таком электроде играет роль хорошего изолятора, а раствор соли - проводника. Электрод соединяют с усилителем электрических сигналов и на экране осциллографа регистрируют этот потенциал. Оказывается, потенциал порядка -70 мВ сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия. Другими словами, в создании этого потенциала участвуют только ионы калия, в связи, с чем этот потенциал получил название «калиевый потенциал покоя», или просто «потенциал покоя». Таким образом, это потенциал любой покоящейся клетки нашего организма, в том числе и нейрона.

Экология жизни. Наука и открытия: Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням

Человек освоил морские глубины и воздушные просторы, проник в тайны космоса и земных недр. Он научился противостоять многим болезням и стал жить дольше. Он пытается манипулировать генами, «выращивать» органы для трансплантации и путем клонирования «творить» живых существ.

Но для него по-прежнему остается величайшей загадкой, как функционирует его собственный мозг, как с помощью обычных электрических импульсов и небольшого набора нейромедиаторов нервная система не только координирует работу миллиардов клеток организма, но и обеспечивает возможность познавать, мыслить, запоминать, испытывать широчайшую гамму эмоций.

На пути к постижению этих процессов человек должен, прежде всего, понять, как функционируют отдельные нервные клетки (нейроны).

Величайшая загадка - как функционирует мозг

Живые электросети

По приблизительным оценкам, в нервной системе человека более 100 млрд нейронов . Все структуры нервной клетки ориентированы на выполнение важнейшей для организма задачи – получение, переработка, проведение и передача информации, закодированной в виде электрических или химических сигналов (нервных импульсов).

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро, развитый белок-синтезирующий аппарат и другие органеллы, а также отростков: одного аксона, и нескольких, как правило, ветвящихся, дендритов. Длина аксонов обычно заметно превосходит размеры дентритов, в отдельных случаях достигая десятков сантиметров и даже метров.

Например, гигантский аксон кальмараимеет толщину около 1 мм и несколько метров в длину; экспериментаторы не преминули воспользоваться такой удобной моделью, и опыты именно с нейронами кальмаров послужили выяснению механизма передачи нервных импульсов.

Снаружи нервная клетка окружена оболочкой (цитолеммой), которая не только обеспечивает обмен веществ между клеткой и окружающей средой, но также способна проводить нервный импульс.

Дело в том, что между внутреннней поверхностью мембраны нейрона и внешней средой постоянно поддерживается разность электрических потенциалов. Это происходит благодаря работе так называемых «ионных насосов» – белковых комплексов, осуществляющих активный транспорт положительно заряженных ионов калия и натрия через мембрану.

Такой активный перенос, а также постоянно протекающая пассивная диффузия ионов через поры в мембране обуславливают в покое отрицательный относительно внешней среды заряд с внутренней стороны мембраны нейрона.

Если раздражение нейрона превышает определенную пороговую величину, то в точке стимуляции возникает серия химических и электрических изменений (активное поступление ионов натрия в нейрон и кратковременное изменение заряда с внутренней стороны мембраны с отрицательного на положительный), которые распространяются по всей нервной клетке.

В отличие от простого электрического разряда, который из-за сопротивления нейрона будет постепенно ослабевать и сумеет преодолеть лишь короткое расстояние, нервный импульс в процессе распространения постоянно восстанавливается .

Основными функциями нервной клетки являются:

  • восприятие внешних раздражений (рецепторная функция),
  • их переработка (интегративная функция),
  • передача нервных влияний на другие нейроны или различные рабочие органы (эффекторная функция).

По дендритам – инженеры назвали бы их «приемниками» – импульсы поступают в тело нервной клетки, а по аксону – «передатчику» – идут от ее тела к мышцам, железам или другим нейронам.

В зоне контакта

Аксон имеет тысячи ответвлений, которые тянутся к дендритам других нейронов. Зона функционального контакта аксонов и дендритов называется синапсом .

Чем больше синапсов на нервной клетке, тем больше воспринимается различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия нервной клетки в разнообразных реакциях организма. На телах крупных мотонейронов спинного мозга может насчитываться до 20 тыс синапсов.

В синапсе происходит преобразование электрических сигналов в химические и обратно. Передача возбуждения осуществляется с помощью биологически активных веществ – нейромедиаторов (ацетилхолина, адреналина, некоторых аминокислот, нейропептидов и др.). О ни содержатся в особых пузырьках, находящихся в окончаниях аксонов – пресинаптической части.

Когда нервный импульс достигает пресинаптической части, происходит выброс нейромедиаторов в синаптическую щель, они связываются с рецепторами, расположенными на теле или отростках второго нейрона (постсинаптической части), что приводит к генерации электрического сигнала – постсинаптического потенциала.

Величина электрического сигнала прямо пропорциональна количеству нейромедиатора.

Одни синапсы вызывают деполяризацию нейрона, другие – гиперполяризацию; первые являются возбуждающими, вторые – тормозящими.

После прекращения выделения медиатора происходит удаление его остатков из синаптической щели и возвращение рецепторов постсинаптической мембраны в исходное состояние. Результат суммации сотен и тысяч возбуждающих и тормозных импульсов, одновременно стекающихся к нейрону, определяет, будет ли он в данный момент генерировать нервный импульс.

Нейрокомпьютеры

Попытка смоделировать принципы работы биологических нейронных сетей привела к созданию такого устройства переработки информации как нейрокомпьютер .

В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях (своего рода синапсах) между очень простыми процессорами, которые формально могут быть названы нейронами.

Нейрокомпьютеры не программируют в традиционном смысле этого слова, а «обучают», настраивая эффективность всех «синаптических» связей между составляющими их «нейронами».

Основными сферами применения нейрокомпьютеров их разработчики видят:

  • распознавание визуальных и звуковых образов;
  • экономическое, финансовое, политическое прогнозирование;
  • управление в реальном времени производственными процессами, ракетами, самолетами;
  • оптимизация при конструировании технических устройств и т.д.

«Голова – предмет темный…»

Нейроны можно разбить на три большие группы:

  • рецепторные,
  • промежуточные,
  • эффекторные.

Рецепторные нейроны обеспечивают ввод в мозг сенсорной информации. Они трансформируют сигналы, поступающие на органы чувств (оптические сигналы в сетчатке глаза, акустические – в ушной улитке, обонятельные – в хеморецепторах носа и др.), в электрическую импульсацию своих аксонов.

Промежуточные нейроны осуществляют обработку информации, получаемой от рецепторов, и генерируют управляющие сигналы для эффекторов. Нейроны этой группы образуют центральную нервную систему (ЦНС).

Эффекторные нейроны передают приходящие на них сигналы исполнительным органам. Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Если принципы функционирования рецепторных и эффекторных нейронов более или менее понятны ученым, то промежуточный этап, на котором организм «переваривает» поступившую информацию и принимает решение о том, как на нее отреагировать, понятен лишь на уровне простейших рефлекторных дуг.

В большинстве же случаев нейрофизиологический механизм формирования тех или иных реакций остается загадкой. Не даром в научно-популярной литературе головной мозг человека часто сравнивают с «черным ящиком».

«…В вашей голове живут 30 млрд нейронов, хранящих ваши знания, навыки, накопленный жизненный опыт. После 25 лет размышлений данный факт кажется мне не менее поразительным, чем раньше. Тончайшая пленка, состоящая из нервных клеток, видит, чувствует, творит наше мировоззрение. Это просто невероятно! Наслаждение теплотой летнего дня и смелые мечты о будущем – все создается этими клетками… Ничего другого не существует: никакой магии, никакого специального соуса, только нейроны, исполняющие информационный танец,» – писал в своей книге «Об интеллекте» известнейший разработчик компьютеров, основатель Редвудского института нейрологии (США) Джефф Хокинс.

Уже более полувека тысячи ученых-нейрофизиологов во всем мире пытаются понять хореографию этого «информационного танца», однако на сегодня известны лишь его отдельные фигуры и па, не позволяющие создать универсальную теорию функционирования головного мозга.

Следует отметить, что многие работы в области нейрофизиологии посвящены так называемой «функциональной локализации» – выяснению того, какой нейрон, группа нейронов или целая область мозга активируется в тех или иных ситуациях.

На сегодня накоплен огромный массив информации о том, какие нейроны у человека, крысы, обезьяны избирательно активируются при наблюдении различных объектов, вдыхании феромонов, прослушивании музыки, разучивании стихотворений и т.д.

Правда, иногда подобные опыты кажутся несколько курьезными. Так, еще в 70-е годы прошлого века одним из исследователей в мозге у крысы были обнаружены «нейроны зеленого крокодильчика»: эти клетки активировались, когда бегущее по лабиринту животное среди прочих предметов натыкалось на уже знакомую ему игрушку маленького зеленого крокодильчика.

А другим ученым позднее в мозге у человека был локализован нейрон, «реагирующий» на фотографию президента США Била Клинтона.

Все эти данные подтверждают теорию о том, что нейроны в головном мозге специализированы , однако ни в коей мере не объясняют, почему и каким образом происходит эта специализация.

Лишь в общих чертах понятны ученым нейрофизиологические механизмы обучения и памяти. Предполагается, что в процессе запоминания информации происходит формирование новых функциональных контактов между нейронами коры головного мозга.

Иными словами, нейрофизиологическим «следом» памяти являются синапсы. Чем больше возникает новых синапсов, тем «богаче» память индивидуума. Типичная клетка в коре головного мозга образует несколько (до 10) тысяч синапсов. С учетом общего числа нейронов коры получается, что всего здесь могут сформироваться сотни миллиардов функциональных контактов!

Под влиянием каких-либо ощущений, мыслей или эмоций происходит припоминание – возбуждение отдельных нейронов активизирует весь ансамбль, ответственный за хранение той или иной информации.

В 2000 г шведскому фармакологу Арвиду Карлссону и американским нейробиологам Полу Грингарду и Эрику Кенделу была присуждена Нобелевская премия по физиологии и медицине за открытия, касающиеся «передачи сигналов в нервной системе».

Ученые продемонстрировали, что память большинства живых существ работает благодаря действию так называемых нейротрансмиттеров дофамина, норадреналина и серотонина , эффект которых в отличие от классических нейромедиаторов развивается не за миллисекунды, а за сотни миллисекунд, секунды и даже часы. Именно этим и обусловлено их длительное, модулирующее влияние на функции нервных клеток, их роль в управлении сложными состояниями нервной системы – воспоминаниями, эмоциями, настроениями.

Следует также отметить, что величина сигнала, генерируемого на постсинаптической мембране, может быть различной даже при одинаковой величине исходного сигнала, достигшего пресинаптической части. Эти различия определяет так называемая эффективность, или вес, синапса, который может изменяться в процессе функционирования межнейронного контакта.

По мнению многих исследователей, изменение эффективности синапсов также играет немаловажную роль в работе памяти. Возможно, часто используемая человеком информация хранится в нейронных сетях, связанных высокоэффективными синапсами, и поэтому быстро и легко «вспоминается». В то же время, синапсы, участвующие в хранении второстепенных, редко «извлекаемых» данных, по-видимому, характеризуются низкой эффективностью.

А все-таки они восстанавливаются!

Одна из наиболее волнующих с медицинской точки зрения проблем нейробиологии – возможность регенерации нервной ткани . Известно, что перерезанные или поврежденные волокна нейронов периферической нервной системы, окруженные неврилеммой (оболочкой из специализированных клеток), могут регенерировать, если тело клетки сохранилось в целости. Ниже места перерезки неврилемма сохраняется в виде трубчатой структуры, и та часть аксона, которая осталась связанной с телом клетки, растет по этой трубке, пока не достигнет нервного окончания. Таким образом восстанавливается функция поврежденного нейрона.

Аксоны в ЦНС не окружены неврилеммой и поэтому, по-видимому, не способны вновь прорастать к месту прежнего окончания.

В то же время, до недавнего времени нейрофизиологи считали, что в течение жизни человека новые нейроны в ЦНС не образуются.

«Нервные клетки не восстанавливаются!», – предостерегали нас ученые. Предполагалось, что поддержание нервной системы в «рабочем состоянии» даже при серьезных заболеваниях и травмах происходит благодаря ее исключительной пластичности: функции погибших нейронов берут на себя их оставшиеся в живых «коллеги», которые увеличиваются в размерах и формируют новые связи.

Высокую, но не беспредельную эффективность подобной компенсации можно проиллюстрировать на примере болезни Паркинсона, при которой происходит постепенное отмирание нейронов. Оказывается, пока в головном мозге не погибнет около 90% нейронов, клинические симптомы заболевания (дрожание конечностей, неустойчивая походка, слабоумие) не проявляются, то есть человек выглядит практически здоровым. Получается, что одна живая нервная клетка может функционально заменить девять погибших!

В настоящее время доказано, что в головном мозге взрослых млекопитающих образование новых нервных клеток (нейрогенез) все же происходит. Еще в 1965 г было показано, что новые нейроны регулярно появляются у взрослых крыс в гиппокампе – области мозга отвечающей за ранние фазы обучения и памяти.

Спустя 15 лет ученые показали, что в мозге птиц новые нервные клетки появляются на протяжении всей жизни. Однако исследования мозга взрослых приматов на предмет нейрогенеза не давали обнадеживающих результатов.

Лишь около 10 лет назад американские ученые разработали методику, которая доказала, что в мозге обезьян в течение всей жизнииз нейрональных стволовых клеток продуцируются новые нейроны. Исследователи вводили животным специальное вещество-метку (бромдиоксиуридин), которое включалось в ДНК только делящихся клеток.

Так было обнаружено, что новые клетки начинали размножаться в субвентрикулярной зоне и уже оттуда мигрировали в кору, где и созревали до взрослого состояния. Новые нейроны обнаруживались в зонах головного мозга, связанных с когнитивными функциями, и не возникали в зонах, реализующих более примитивный уровень анализа.

В связи с этим ученые предположили, что новые нейроны могут быть важны для процесса обучения и памяти .

В пользу данной гипотезы говорит также следующее: большой процент новых нейронов гибнет в первые недели после того, как они родились; однако в тех ситуациях, когда происходит постоянное обучение, доля выживших нейронов значительно выше, чем тогда, когда они «не востребованы» – когда животное лишено возможности образовывать новый опыт.

На сегодня установлены универсальные механизмы гибели нейронов при различных заболеваниях:

1) повышение уровня свободных радикалов и окислительное повреждение мембран нейронов;

2) нарушение деятельности митохондрий нейронов;

3) неблагоприятное действие избытка возбуждающих нейротрансмиттеров глутамата и аспартата, приводящее к гиперактивации специфических рецепторов, избыточному накоплению внутриклеточного кальция, развитию окислительного стресса и гибели нейрона (феномен эксайтотоксичности).

Исходя из этого, в качестве лекарственных средств – нейропротекторов в неврологии используют:

  • препараты с антиоксидантными свойствами (витамины Е и С, др.),
  • корректоры тканевого дыхания (коэнзим Q10, янтарная кислота, рибофлавини, др),
  • а также блокаторы рецепторов глутамата (мемантин, др.).

Примерно в то же время была подтверждена возможность появления новых нейронов из стволовых клеток в головном мозге взрослого человека: патологоанатомическое исследование пациентов, получавших при жизни бромдиоксиуридин с терапевтической целью, показало, что нейроны, содержащие данное вещество-метку, обнаруживаются практически во всех отделах мозга, включая кору больших полушарий.

Этот феномен всесторонне исследуется с целью лечения различных нейродегенеративных заболеваний, прежде всего болезней Альцгеймера и Паркинсона, ставших настоящим бичом для «стареющего» населения развитых стран.

В экспериментах для трансплантации используют как нейрональные стволовые клетки, которые и у эмбриона, и у взрослого человека располагаются вокруг желудочков головного мозга, так и эмбриональные стволовые клетки, способные превращаться практически в любые клетки организма.

К сожалению, на сегодняшний день врачи не могут разрешить основную проблему, связанную с пересадкой нейрональных стволовых клеток: их активное размножение в организме реципиента в 30-40% случаев приводит к образованию злокачественных опухолей.

Несмотря на это, специалисты не теряют оптимизма и называют трансплантацию стволовых клетокодним из наиболее перспективных подходов в терапии нейродегенеративных заболеваний. опубликовано . Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза , где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.

Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.

Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – , а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга. Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга. Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток. В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».



Понравилась статья? Поделитесь ей