Контакты

Нейрогенные расстройства трофики. Нейродистрофический процесс. Устранение нейротрофических нарушений различных иерар

Трофические процессы поддерживают определённый уровень обмена веществ в органах и тканях. Эти процессы регулирует нервная система благодаря особым соединениям, получившим название «трофогены». Среди трофогенов выделяют полипептиды (фактор роста нервов, нейротрофический фактор, синтезируемый в головном мозге, нейротрофины-3 и 4), ганглиозиды, нейропептиды (метэнкефалин, вещество Р, β-эндорфины и др.), гормоны белковой природы (фрагменты АКТГ, инсулиноподобные факторы роста), нейромедиаторы (ацетилхолин, катехоламины). Трофогены синтезируют не только нервные клетки, но и клетки-мишени, что означает взаимное регулирующее влияние нервной системы и периферических тканей. Кроме того, синтез трофогенов происходит в центральных и афферентных нейронах. Например, афферентный нейрон оказывает трофическое влияние на центральный нейрон, а через него - на вставочный или эфферентный нейрон.
По мнению А.Д. Сперанского , каждый нерв, вне зависимости от своей функции, выполняет также трофическую функцию. Нервная система - единая нейротрофическая сеть, в ней соседние и отдалённые друг от друга нейроны обмениваются не только импульсными, но и трофическими сигналами. Механизмы регулирующего влияния трофогенов на клетки-мишени - непосредственное участие нейротрофических факторов в метаболических внутриклеточных процессах и действие трофогенов на генетический аппарат клеток, что вызывает экспрессию или подавление определённых генов. Очевидно, при непосредственном участии трофогенов в обменных процессах иннервированных клетках возникают кратковременные ультраструктурные изменения. Изменение генетического аппарата клетки-мишени под влиянием трофогенов ведёт к устойчивым структурным и функциональным нарушениям свойств иннервируемой ткани.

Нейротрофическую функцию могут нарушать разнообразные патологические процессы как в самой нервной системе, так и в периферических органах и тканях. Существуют следующие основные причины нарушения нейротрофической функции.

● Нарушение метаболизма трофогенов (как снижение количества образуемых веществ, так и изменение спектра синтезируемых нейротрофических факторов, например, при белковой недостаточности, повреждении генетического аппарата нейрона).

● Нарушение транспорта синтезированных трофогенов к клеткам-мишеням (травма аксона).

● Нарушение выделения и поступления трофогенов в клетки-мишени (аутоиммунные процессы, нарушения регулирующей функции нейромедиаторов и др.).

● Неадекватная реализация действия трофогенов, например, при патологических процессах в иннервируемых тканях (воспаление, опухоль и т.д.).

Денервационный синдром возникает при прекращении иннервации ткани или органа в результате разрушения нервных проводников (травмы, опухоли, воспаление), повреждения нервных клеток. При этом в денервированных тканях происходят функциональные, структурные и обменные расстройства. Они связаны с нарушением действия на клетки-мишени соответствующего нейромедиатора, дефицитом трофогенов, изменением микроциркуляции и органного кровообращения, ареактивностью денервированной ткани к эндокринным влияниям и др.

Наиболее ярко денервационный синдром проявляется в скелетных мышцах при перерезании аксона или разрушении тела мотонейрона. После денервации в поперечнополосатых мышцах происходит нейрогенная (нейротрофическая, нейротическая) атрофия. Выявляют значительное (в 100–1000 раз) повышение чувствительности мышц к нейромедиатору ацетилхолину, другим гуморальным воздействиям (закон денервации Кеннона), расширение зоны рецепции вокруг мионевральной пластинки. Также наблюдают выпадение произвольных движений (паралич) и появление фибриллярных мышечных подёргиваний , связанных с возрастанием возбудимости мышц. При этом атрофированные поперечнополосатые мышцы уменьшены в размерах, буроватого цвета (бурая атрофия), увеличено количество межмышечной соединительной и жировой ткани. Микроскопически отмечают уменьшение количества митохондрий, миофиламентов, снижен объём эндоплазматической сети, возрастает количество аутофагических вакуолей, содержащих фрагменты внутриклеточных структур (митохондрий, эндоплазматической сети и др.). Часть клеточных обломков, не расщепленных в аутолизосомах, сохраняется как остаточные тельца (например, гранулы липофусцина). При большом количестве липофусцина ткань приобретает бурую окраску. Биохимически процесс нейротрофической атрофии вызван дисбалансом между процессами синтеза и распада. Кроме того, нейротрофины, в частности, предшественник фактора роста нервов, могут спровоцировать апоптоз денервированных клеток. Изменение генетического аппарата клеток и появление антигенных свойств денервированной ткани вызывают активацию иммунной системы (инфильтрацию ткани лимфоцитами, полиморфноядерными лейкоцитами, макрофагами, т.е. развитие реакции отторжения).

Трофика клетки – совокупность процессов, обеспечивающих жизнедеятельность клетки и поддержание генетически заложенных свойств. Расстройство трофики представляет собой дистрофию, развивающиеся дистрофические изменения составляют дистрофический процесс.

Нейродистрофический процесс – это развивающееся нарушение трофики, которое обусловлено выпадением или изменением нервных влияний. Оно может возникать как в периферических тканях, так и в самой нервной системе.

Выпадение нервных влияний заключается:

В прекращении стимуляции иннервируемой структуры в связи с нарушением выделения или действия нейромедиатора;

В нарушении секреции или действия комедиаторов –веществ, которые выделяются вместе с нейромедиаторами и играют роль нейромодуляторов, обеспечивающих регуляцию рецепторных, мембранных и метаболических процессов;

В нарушении выделения и действия трофогенов.

Трофогены (трофины) – вещества различной, преимущественно белковой природы, осуществляющие собственно трофические эффекты поддержания жизнедеятельности и генетически заложенных свойств клетки.

Источники трофогенов:

Нейроны, из которых трофогены поступают с антероградным (ортоградным) аксоплазматическим током в клетки-реципиенты (другие нейроны или иннервируемые ткани на периферии);

Клетки периферических тканей, из которых трофогены поступают по нервам с ретроградным аксоплазматическим током в нейроны (рис. 5);

Глиальные и шванновские клетки, которые обмениваются с нейронами и их отростками трофическими веществами.

Вещества, играющие роль трофогенов, образуются также из сывороточных и иммунных белков. Трофическое воздействие могут оказывать некоторые гормоны. В регуляции трофических процессов принимают участие пептиды, ганглиозиды, некоторые нейромедиаторы.

К нормотрофогенам относятся различного рода белки, способствующие росту, дифференцировке и выживанию нейронов и соматических клеток, сохранению их структурного гомеостаза (например, фактор роста нервов).

В условиях патологии в нервной системе вырабатываются трофические вещества, вызывающие устойчивые патологические изменения клеток-реципиентов – патотрофогены (по Г.Н. Крыжановскому).

Патотрофогены синтезируются, например, в эпилептических нейронах – поступая с аксоплазматическим током в другие нейроны, они могут индуцировать у этих нейронов-реципиентов эпилептические свойства.

Патотрофогены могут распространяться по нервной системе как по трофической сети, что является одним из механизмов распространения патологического процесса.

Патотрофогены образуются и в других тканях.

Дистрофический процесс в денервированной мышце. Синтезируемые в теле нейрона и транспортируемые в терминаль с аксоплазматическим током вещества, выделяются нервным окончанием и поступают в мышечные волокна (см. рис. 4), выполняя функцию трофогенов.


Эффекты нейротрофогенов видны из опытов с перерезкой двигательного нерва : чем выше произведена перерезка, т.е. чем больше сохранилось трофогенов в периферическом отрезке нерва, тем позднее наступает денервационный синдром .

Нейрон вместе с иннервируемой им структурой (например, мышечным волокном) образует регионарный трофический контур (или регионарную трофическую систему, см. рис. 4). Например, если осуществить перекрестную реиннервацию мышц с разными исходными структурно-функциональными характеристиками (реиннервация «медленных» мышц волокнами от нейронов, иннервировавших «быстрые» мышцы, или наоборот), то реиннервированная мышца приобретает в значительной мере новые динамические характеристики: «медленная» становится «быстрой», а «быстрая» – «медленной».

Рис. 4. Трофические связи мотонейрона и мышцы. Вещества из тела мотонейрона (МН), его мембраны 1, перикариона 2, ядра 3 транспортируются с антероградным аксоплазматическим током 4 в терминаль 5. Отсюда они, а также вещества, синтезируемые в самой терминали 6, поступают транссинаптически через синаптическую щель (СЩ) в концевую пластинку (КП) и в мышечное волокно (МВ). Часть неиспользованного материала поступает обратно из терминали в тело нейрона с ретроградным аксоплазматическим током 7. Вещества, образующиеся в мышечном волокне и концевой пластинке, поступают транссинаптически в обратном направлении в терминаль и далее с ретроградным аксоплазматическим током 7 в тело нейрона - к ядру 8, в перикарион 9, к мембране дендритов 10. Некоторые из этих веществ могут поступать из дендритов (Д) транссинаптически в другой нейрон через его пресинаптическое окончание (ПО) и из этого нейрона далее в другие нейроны.

Между нейроном и мышцей происходит постоянный обмен веществами, поддерживающими трофику, структурную целостность и нормальную деятельность обоих образований. В этом обмене принимают участие глиальные клетки (Г). Все указанные образования создают регионарную трофическую систему (трофический контур)

В денервированном мышечном волокне возникают новые трофогены, которые активируют разрастание нервных волокон (sprouting ). Указанные явления исчезают после реиннервации.

Нейродистрофический процесс в других тканях. Взаимные трофические влияния существуют между каждой тканью и ее нервным аппаратом.

При перерезке афферентных нервов возникают дистрофические изменения кожи. Перерезка седалищного нерва (смешанный нерв, содержит чувствительные и двигательные волокна), вызывает образование дистрофической язвы в области скакательного сустава у крысы.

Классический опыт Ф. Мажанди (1824), послуживший началом разработки всей проблемы нервной трофики , заключается в перерезке у кролика первой ветви тройничного нерва. В результате операции развивается язвенный кератит, вокруг язвы возникает воспаление, и со стороны лимба в роговицу врастают сосуды, которые в ней в норме отсутствуют. Врастание сосудов является выражением патологического растормаживания сосудистых элементов – в дистрофически измененной роговице исчезает фактор, который тормозит в норме рост в нее сосудов, и появляется фактор, который активирует этот рост.

Вывод о существовании трофических нервов привел к представлению о нервной трофике, а результаты перерезки этих нервов – к представлению о нейрогенных (денервационных) дистрофиях.

В дальнейшем мнение о существовании трофической функции нервов нашло подтверждение в работах И.П. Павлова. Огромная заслуга И.П. Павлова состоит в том, что он распространил учение о рефлекторной деятельности нервной системы на нервно-трофические процессы, выдвигая и развивая проблему трофических рефлексов.

Последующие исследования К.М. Быкова (1954) и А.Д. Сперанского (1955) углубили и расширили представления о трофических расстройствах и их связи с нервной системой.

К.М. Быковым были получены данные, свидетельствующие о функциональной связи коры полушарий головного мозга и внутренних органов, обеспечивающих постоянство внутренней среды и нормальное течение трофических процессов в организме. Расстройства коркового управления висцеральными функциями разного происхождения могут привести к нейродистрофическим процессам в тканях, например к появлению язв в желудочно-кишечном тракте.

А.Д. Сперанским было установлено, что нарушение нервно-трофических процессов в организме может возникнуть при действии раздражителей разной природы и повреждении любого участка периферической или центральной нервной системы.

Дистрофические процессы в разных органах появляются и при раздражении периферических нервов, и нервных ганглиев, и самого мозга. Локализация первичного повреждения нервной системы вносила лишь различия в картину нейрогенных дистрофий, но механизмы их развития оказались однотипными . Поэтому процесс, развивающийся после повреждения какого-либо участка нервной системы, А.Д. Сперанский назвал стандартным нейро-дистрофическим процессом . Эти факты послужили основой формирования важного для патологии положения о существовании стереотипной формы нейрогенных расстройств трофики – нейродистрофии.

И.В. Давыдовский (1969) считал нервно-трофические нарушения ответственными за возникновение дистрофии, некроза и воспаления при авитаминозах, лепре, язве стопы, болезни Рейно, пролежнях, обморожениях и многих других патологических процессов и заболеваний.

Клинические проявления нейродистрофического процесса . Клиницистами описаны нейрогенные атрофии при денервации органов, особенно поперечно-полосатых мышц, нейрогенные трофические язвы, появляющиеся при разного рода повреждениях нервной системы. Установлена связь с нервной системой трофических нарушений кожи в форме измененного ороговения, роста волос, регенерации эпидермиса, депигментаций, а также расстройств в отложении жира – липоматозы.

Выявлены трофические расстройства нервного происхождения и при таких заболеваниях как склеродермия, сирингомиелия, спинная сухотка и др. Трофические расстройства обнаружены не только при нарушениях целостности нервов, сплетений или повреждениях мозга, но и при так называемых функциональных расстройствах нервной системы, например при неврозах.

Дополнительные факторы нейродистрофического процесса. К факторам, участвующим в развитии нейродистрофического процесса, относятся: сосудистые изменения в тканях, нарушения гемо- и лимфомикроциркуляции, патологическая проницаемость сосудистой стенки, нарушение транспорта в клетку питательных и пластических веществ.

Важным патогенетическим звеном является возникновение в дистрофической ткани новых антигенов в результате изменений генетического аппарата и синтеза белка, образуются антитела к тканевым антигенам, возникают аутоиммунный и воспалительный процессы. В указанный комплекс патологических процессов входят также вторичное инфицирование язвы, развитие инфекционных повреждений и воспаления. В целом нейродистрофические поражения тканей имеют сложный многофакторный патогенез.

При повреждении шейного отдела спинного мозга синдром полного нарушения проводимости сначала проявляется вялой тетраплегией с выпадением сухожильных и периостальных рефлексов на руках и ногах, выпадением брюшных и кремастерных рефлексов, отсутствием всех видов чувствительности книзу от уровня повреждения спинного мозга и нарушением функций тазовых органов в виде стойкой задержки мочи и кала.

При синдроме частичного нарушения проводимости шейного отдела спинного мозга неврологические нарушения выражены менее грубо, отмечается диссоциация между степенью выпадения движений, чувствительностью и нарушением функций тазовых органов, а также рефлекторными нарушениями .

Повреждения шейного отдела спинного мозга сопровождаются параличом поперечно-полосатой мускулатуры грудной клетки, что приводит к грубым нарушениям дыхания, требующим нередко наложения трахеостомы и применения искусственной аппаратной вентиляции легких. Повреждение на уровне IV шейного сегмента наряду с этим приводит к параличу диафрагмы и, если срочно не осуществлен перевод больного на аппаратное дыхание, к его гибели.

Тяжесть состояния пострадавшего при повреждении шейного отдела спинного мозга часто усугубляет восходящий отек продолговатого мозга и появление бульбарных симптомов - расстройств глотания, брадикардии с последующей тахикардией, нистагма и, при неэффективности проводимой терапии, остановкой дыхания вследствие паралича дыхательного центра. Возникновение бульбарных симптомов сразу после травмы указывает на сочетанное повреждение одновременно шейного отдела спинного мозга и стволовых отделов головного мозга, что является неблагоприятным признаком.

При отсутствии анатомического перерыва спинного мозга его проводниковые функции постепенно восстанавливаются, появляются активные движения в парализованных конечностях, улучшается чувствительность, нормализуется функция тазовых органов.

При повреждении грудного отдела спинного мозга возникает вялый паралич (при менее грубом его повреждении - парез) мышц ног с выпадением брюшных рефлексов, а также сухожильных рефлексов на нижних конечностях. Нарушения чувствительности обычно носят проводниковый характер (соответствуют уровню повреждения спинного мозга), расстройства функций тазовых органов заключаются в задержке мочи и кала .

При повреждении верхнегрудного отдела спинного мозга возникает паралич и парез дыхательной мускулатуры, что приводит к резкому ослаблению дыхания. Повреждение на уровне III-V грудных сегментов спинного мозга нередко сопровождается нарушением сердечной деятельности.

При повреждении пояснично-крестцового отдела спинного мозга наблюдается вялый паралич мышц ног на всем их протяжении или мышц дистальных отделов, а также нарушаются все виды чувствительности ниже места повреждения. Одновременно выпадают кремастерные, подошвенные, ахилловы рефлексы, а при более высоких поражениях - и коленные. В то же время брюшные рефлексы сохраняются. Задержку мочи и кала нередко сменяет паралитическое состояние мочевого пузыря и прямой кишки, в результате развивается недержание кала и мочи .

При отсутствии анатомического перерыва спинного мозга, а также при синдроме частичного нарушения его проводимости отмечается постепенное восстановление нарушенных функций.

Клинически прогрессирующая травматическая болезнь может проявляться:

- синдромами миелопатии (сиринго-миелитический синдром, синдром бокового амиотрофического склероза, спастическая параплегия, нарушения спинального кровообращения);

- спинальным арахноидитом, характеризующимся полирадикулярным болевым синдромом, усугублением имевшихся проводниковых расстройств;

- дистрофическим процессом в виде остеохондроза, деформирующего спондилеза со стойким болевым синдромом.

Осложнения и последствия повреждений позвоночника и спинного мозга делят следующим образом :

- инфекционно-воспалительные осложнения;

- нейротрофические и сосудистые нарушения;

- нарушения функции тазовых органов;

- ортопедические последствия.

Инфекционно-воспалительные осложнения могут быть ранними (развиваются в острый и ранний периоды ПСМТ) и поздними. В остром и раннем периоде гнойно-воспалительные осложнения в первую очередь связаны с инфицированием дыхательной и мочевыводящей систем, а также с пролежневым процессом, который протекает по типу гнойной раны. При открытой ПСМТ возможно также развитие таких грозных осложнений, как гнойный эпидурит, гнойный менингомиелит, абсцесс спинного мозга, остеомиелит костей позвоночника. К поздним инфекционно-воспалительным осложнениям относят хронический эпидурит и арахноидит.

Пролежни - одно из основных осложнений, возникающих у больных с травмами позвоночника, которые сопровождаются повреждениями спинного мозга. По различным данным, они встречаются у 40-90% больных с травмами позвоночника и спинного мозга. Довольно часто течение глубоких и обширных пролежней в некротически-воспалительной стадии сопровождается выраженной интоксикацией, септическим состоянием и в 20% случаев заканчивается смертельным исходом. Во многих работах, касающихся спинальных больных, пролежни определяются как трофические нарушения. Без нарушения трофики тканей пролежни возникнуть не могут, и их развитие обусловлено травмой спинного мозга. При такой трактовке появление пролежней у спинальных больных становится неизбежным. Тем не менее у ряда спинальных больных пролежни не образуются. Некоторые авторы связывают образование пролежней с факторами сдавления, смещающей силы и трения, длительное воздействие которых на ткани между костями скелета и поверхностью постели вызывает ишемию и развитие некроза. Нарушение кровообращения (ишемия) при длительном сдавливании мягких тканей в конечном счете приводит к местным трофическим нарушениям и некрозу различной степени в зависимости от глубины поражения тканей. Ишемия мягких тканей, переходящая при длительной экспозиции в некроз, в сочетании с инфекцией и другими неблагоприятными факторами приводит к нарушению иммунитета больного, вызывает развитие тяжелого септического состояния, сопровождающегося интоксикацией, анемией, гипопротеине-мией. Длительный гнойный процесс часто ведет к амилоидозу внутренних органов, в результате которого развивается почечная и печеночная недостаточность.

Пролежни в области крестца по частоте занимают первое место (до 70% случаев) и обычно появляются в начальном периоде травматической болезни спинного мозга, что препятствует проведению ранних реабилитационных ме-роприятий и в ряде случаев не позволяет своевременно произвести реконструктивные вмешательства на позвоночнике и спинном мозге.

При оценке состояния пролежней можно использовать классификацию, предложенную А.В. Гаркави , в которой выделены шесть стадий: 1) первичная реакция; 2) некротическая; 3) некротически-воспалительная; 4) воспалительно-регенераторная; 5) регенераторно-рубцовая; 6) трофических язв. Клинически пролежни в стадии первичной реакции (обратимая стадия) характеризовались ограниченной эритемой кожи, образованием пузырей в области крестца.

Нейротрофические и сосудистые нарушения возникают в связи с денервацией тканей и органов. В мягких тканях у больных ПСМТ очень быстро развиваются пролежни и плохо заживающие трофические язвы. Пролежни и язвы становятся входными воротами инфекции и источниками септических осложнений, приводя в 20-25% случаев к смерти . Для анатомического перерыва спинного мозга характерно возникновение так называемых твердых отеков нижних конечностей. Характерны нарушения метаболизма (гипопротеине-мия, гиперкальциемия, гипергликемия), остеопороз, анемия. Нарушение вегетативной иннервации внутренних органов приводит к развитию гнойно-некротических язвенных колитов, энтероколитов, гастритов, к острым желудочно-кишечным кровотечениям, к дисфункции печени, почек, поджелудочной железы. Наблюдается тенденция к камнеобразованию в желчных и в мочевы-водящих путях. Нарушение симпатической иннервации миокарда (при травмах шейного и грудного отделов спинного мозга) проявляется брадикардией, аритмией, ортостатической гипотензией. Может развиться либо усугубиться ишемическая болезнь сердца, при этом больные могут не чувствовать боли в результате нарушения ноцептивной афферентной импульсации от сердца . Со стороны легочной системы более чем у 60% больных в раннем периоде развивается пневмония, которая служит одной из наиболее частых причин гибели пострадавших .

Одним из осложнений является также вегетативная дизрефлексия. Вегетативная дизрефлексия представляет собой мощную симпатическую реакцию, возникающую в ответ на болевые или иные стимулы у больных с уровнем поражения спинного мозга выше Th6. У больных с тетраплегией этот синдром наблюдается, по данным разных авторов, в 48-83% случаев, обычно спустя два и более месяцев после травмы . Причиной служит болевая, либо проприоцептивная импульса-ция, обусловленная растяжением мочевого пузыря, катетеризацией, гинекологическим или ректальным обследованием, а также другими интенсивными воздействиями. В норме проприоцептивные и болевые импульсы следуют к коре головного мозга по задним столбам спинного мозга и спиноталамическому пути. Полагают, что при перерыве этих путей импульсация циркулирует на спинальном уровне, вызывая возбуждение симпатических нейронов и мощный «взрыв» симпатической активности; при этом нисходящие супраспинальные ингибирующие сигналы, в норме модулирующие вегетативную реакцию, в силу поврежденияспинного мозга не оказывают должного тормозного воздействия . В результате развивается спазм периферических сосудов и сосудов внутренних органов, что приводит к резкому подъему артериального давления. Нескорригированная ги-пертензия может привести к потере сознания, к развитию внутримозгового кровоизлияния, острой сердечной недостаточности.

Другим грозным осложнением, приводящим нередко к летальному исходу, является тромбоз глубоких вен , возникающий по различным данным у 47-100% больных ПСМТ . Наиболее высок риск тромбоза глубоких вен в первые две недели после травмы. Следствием тромбоза глубоких вен может стать эмболия легочной артерии, которая возникает в среднем у 5% больных и является ведущей причиной смерти при ПСМТ . При этом в результате повреждения спинного мозга могут отсутствовать типичные клинические симптомы эмболии (боль в груди, диспноэ, кровохарканье); первыми признаками могут быть нарушения сердечного ритма .

Нарушения функции тазовых органов проявляются расстройствами мочеиспускания и дефекации . В стадии спинального шока наблюдается острая задержка мочи, связанная с глубокой депрессией рефлекторной активности спинного мозга. По мере выхода из шока форма нейрогенной дисфункции мочевого пузыря зависит от уровня поражения спинного мозга. При поражении надсегментарных отделов (мочевой пузырь получает парасимпатическую и соматическую иннервацию из сегментов S2-S4) развивается нарушение мочеиспускания по проводниковому типу. Вначале наблюдается задержка мочеиспускания, связанная с повышением тонуса наружного сфинктера мочевого пузыря. Может наблюдаться парадоксальная ишурия: при переполненном мочевом пузыре моча выделяется по каплям в результате пассивного растяжения шейки мочевого пузыря и пузырных сфинктеров. По мере развития автоматизма отделов спинного мозга, находящихся дистальнее уровня поражения (через две-три недели после травмы, а иногда и в более отдаленные сроки), формируется «рефлекторный» (иногда его называют «гиперрефлекторный») мочевой пузырь: начинает работать спинальный центр мочеиспускания, локализующийся в конусе спинного мозга, и мочеиспускание происходит рефлекторно, по типу автоматизма, в ответ на наполнение мочевого пузыря и раздражение рецепторов его стенок, при этом нет произвольной (корковой) регуляции мочеиспускания. Наблюдается недержание мочи. Моча выделяется внезапно, небольшими порциями. Может наблюдаться парадоксальное прерывание мочеиспускания в связи с непроизвольным преходящим торможением мочевого потока в течение рефлекторного опорожнения. При этом императивный позыв на опорожнение мочевого пузыря указывает на неполное нарушение проводимости спинного мозга (сохранность афферентных проводящих путей от пузыря к коре больших полушарий), тогда как спонтанное внезапное опорожнение мочевого пузыря без позыва - на полное нарушение проводимости спинного мозга . На неполное поражение проводящих путей указывает также ощущение самого процесса мочеиспуска-ния и ощущение облегчения после мочеиспускания (сохранность путей температурной, болевой и проприоцептивной чувствительности от уретры к коре головного мозга). При надсегментарном поражении положителен тест «холодной воды»: через несколько секунд после введения через уретру в мочевой пузырь 60 мл холодной воды вода, а иногда и катетер с силой выталкиваются наружу. Повышен также тонус наружного ректального сфинктера. С течением времени в стенках мочевого пузыря могут наступить дистрофические и рубцовые изменения, приводящие к гибели детрузора и формированию вторично-сморщенного мочевого пузыря («органический арефлекторный мочевой пузырь»). При этом наблюдается отсутствие пузырного рефлекса, развивается истинное недержание мочи.

При травме спинного мозга с непосредственным поражением спинальных центров мочеиспускания (крестцовых сегментов S2-S4) происходит угасание рефлекса опорожнения мочевого пузыря в ответ на его наполнение. Развивается гипорефлекторная форма мочевого пузыря («функциональный арефлекторный мочевой пузырь»), характеризующаяся низким внутрипузырным давлением, снижением силы детрузора и резко заторможенным рефлексом мочеиспускания. Сохранность эластичности шейки мочевого пузыря приводит к перерастяжению мочевого пузыря и большому количеству остаточной мочи. Характерно напряженное мочеиспускание (для опорожнения мочевого пузыря больной натуживается или производит ручное выдавливание). Если больной перестает напрягаться, опорожнение прекращается (пассивное прерывистое мочеиспускание). Тест «холодной воды» отрицателен (рефлекторный ответ в виде выталкивания введенной в мочевой пузырь воды не наблюдается в течение 60 секунд). Анальный сфинктер расслаблен. Иногда пузырь опорожняется автоматически, но не за счет спинальной рефлекторной дуги, а в связи с сохранением функции интрамуральных ганглиев. Необходимо отметить, что ощущение растяжения мочевого пузыря (появление эквивалентов) сохраняется иногда при неполном повреждении спинного мозга, часто в нижнее-грудном и поясничном отделе благодаря сохранной симпатической иннервации (симпатическая иннервация мочевого пузыря связана с сегментами ТЫ 1, ТЫ2, LI, L2). По мере развития в мочевом пузыре дистрофических процессов и потери шейкой пузыря эластичности формируются органический арефлекторный мочевой пузырь и истинное недержание с постоянным выделением мочи по мере ее поступления в пузырь.

При выделении клинических синдромов основное значение придается тонусу детрузора и сфинктера и их взаимоотношению. Тонус детрузора или силу его сокращения измеряют по приросту внутрипузырного давления в ответ на введение всегда постоянного количества жидкости - 50 мл. Если этот прирост составляет 103+13 мм водн. ст., тонус детрузора мочевого пузыря считается нормальным, при меньшем приросте - сниженным, при большем - повышенным. Нормальными показателями сфинктерометрии считаются 70- 11 мм рт. ст.

В зависимости от соотношения состояния детрузора и сфинктера выделяют несколько синдромов.

Атонический синдром отмечается чаще при поражении конуса спинного мозга, то есть спинальных центров регуляции мочеиспускания. При цистомет-рическом исследовании введение в мочевой пузырь 100-450 мл жидкости не изменяет нулевого пузырного давления. Введение больших объемов (до 750 мл) сопровождается медленным повышением внутрипузырного давления, но оно не превышает 80-90 мм водн. ст. Сфинктерометрия при атоническом синдроме выявляет низкие показатели тонуса сфинктера - 25-30 мм рт. ст. Клинически это сочетается с атонией и арефлексией скелетной мускулатуры.

Синдром гипотонии детрузора - также результат сегментарных дисфункций мочевого пузыря, при этом вследствие снижения тонуса детрузора емкость пузыря увеличивается до 500-700 мл. Тонус сфинктера может быть пониженным, нормальным и даже повышенным.

Синдром преобладающей гипотонии сфинктера наблюдается при травмах на уровне S2-S4 сегментов; для него характерно частое непроизвольное отделение мочи без позыва. При сфинктерометрии выявляется отчетливое снижение тонуса сфинктера и на цистограмме - незначительно сниженный или нормальный тонус детрузора. При пальпаторном исследовании сфинктера прямой кишки и мышц промежности определяется низкий тонус.

Синдром гипертонии детрузора и сфинктера отмечается у больных с проводниковым типом дисфункции мочевого пузыря. Цистометрически при введении в мочевой пузырь 50-80 мл жидкости наблюдается резкий скачок внутрипузырного давления до 500 мм водн. ст. При сфинктерометрии тонус его высокий - от 100 до 150 мм рт. ст. Наблюдаются резкие сокращения мышц промежности в ответ на их пальпацию.

Синдром преобладающей гипертонии детрузора при цистометрии характеризуется повышением тонуса детрузора при маленькой емкости пузыря (50-150 мл), отмечается высокий скачок внутрипузырного давления в ответ на введение 50 мл жидкости, а тонус сфинктера может быть нормальным, повышенным или пониженным.

Для выяснения электровозбудимости мочевого пузыря применяют также трансректальную электростимуляцию. При грубых дистрофических процессах в мочевом пузыре детрузор теряет свою возбудимость, что проявляется отсутствием подъема внутрипузырного давления в ответ на электрическую стимуляцию. Степень дистрофических процессов определяют по количеству коллаге-новых волокон методом пузырной биопсии (при инфицировании мочевых путей либо значительных трофических нарушениях в стенке пузыря биопсия не показана).

Зачастую спинальное повреждение сочетается с нарушением мочевыделения и развитием инфекций мочевыводящих путей (МВП). В настоящее время инфекции МВП (ИМП) представляют собой основную причину заболеваемости и смертности пациентов с повреждением спинного мозга. Около 40% инфекций у данной категории пациентов имеют нозокомиальное происхождение и большинство из них связано с катетеризацией мочевого пузыря. ИМП в 2-4%случаев являются причиной бактериемии, при этом вероятность летального исхода у пациентов с уросепсисом с использованием современной тактики ведения данной категории больных составляет от 10 до 15%, причем этот показатель в три раза выше, чем у пациентов без бактериемии.

Инфицирование МВП зависит не только от факторов риска, обусловленных как денервацией мочевого пузыря, так и выбранным методом катетеризации. Общая частота развития ИМП у спинальных пациентов составляет 0,68 на 100 человек. Наиболее опасными с точки зрения инфицирования признаны методы постоянного дренирования и использование открытых систем. Вероятность развития инфекции при этом составляет 2,72 случая на 100 пациентов, в то время как при использовании периодической катетеризации и закрытых систем катетеризации этот показатель составляет 0,41 и 0,36 случаев на 100 человек в день соответственно. Для спинальных пациентов характерно атипичное и мало-симптомное течение ИМП.

Нарушение акта дефекации при ПСМТ также зависит от уровня поражения спинного мозга . При над сегментарном поражении больной перестает ощущать позывы на дефекацию и наполнение прямой кишки, наружный и внутренний сфинктеры прямой кишки находятся в состоянии спазма, возникает стойкая задержка стула. При поражении спинальных центров развивается вялый паралич сфинктеров и нарушение рефлекторной перистальтики кишечника, что проявляется истинным недержанием кала с его отхождением небольшими порциями при поступлении в прямую кишку. В более отдаленный период может наступать автоматическое опорожнение прямой кишки за счет функционирования интрамурального сплетения. При ПСМТ возможно также возникновение гипотонического запора, связанного с гипомобильностыо больного, слабостью мышц брюшного пресса, парезом кишечника. Нередко наблюдаются геморроидальные кровотечения .

Ортопедические последствия ПСМТ условно могут быть разделены по их локализации на вертебральные, то есть связанные с изменением формы и структуры самого позвоночника, и экстравертебральные, то есть обусловленные изменением формы и структуры иных элементов опорно-двигательной системы (патологические установки сегментов конечностей, контрактуры суставов и др.). По характеру функциональных нарушений, возникающих при ПСМТ, ортопедические последствия можно разделить также на статические, то есть сопровождающиеся нарушением статики тела, и динамические, то есть сопряженные с нарушением динамических функций (локомоции, мануальные манипуляции и др.). Ортопедические последствия могут быть следующими : нестабильность травмированного отдела позвоночника; сколиозы и кифозы позвоночника (особенно часто прогрессируют кифотические деформации с углом кифоза, превышающим 18-20°); вторичные вывихи, подвывихи и патологические переломы; дегенеративные изменения в межпозвонковых дисках, суставах и связках позвоночника; деформация и сужение позвоночного канала с компрессией спинного мозга. Данные последствия сопровождаются об-ычно стойким болевым синдромом, ограничением подвижности травмированного отдела позвоночника и его функциональной несостоятельностью, а в случаях сдавления спинного мозга - прогрессирующим нарушением функций спинного мозга. Возникшие ортопедические нарушения при отсутствии своевременного лечения часто прогрессируют и приводят больного к инвалидности.

Большую группу ортопедических последствий составляют вторичные деформации конечностей, суставов, ложные суставы и контрактуры, которые формируются при отсутствии ортопедической профилактики уже через несколько недель после первичной травмы.

К достаточно частому осложнению ПСМТ относится гетеротопическая оссификация , развивающаяся обычно в первые шесть месяцев после травмы, по различным данным, у 16-53% больных . Эктопические оссификаты появляются лишь в областях, расположенных ниже неврологического уровня поражения. Обычно поражаются области крупных суставов конечностей (тазобедренные, коленные, локтевые, плечевые).

Рассматривая концепцию Г. Селье (1974) о «стрессе» и «дистрессе» в клинических, психологических и социальных аспектах, можно предположить в клинике осложненных повреждений позвоночника и спинного мозга наличие, кроме биологических, также общих неспецифических и частных специфических личностных, психологических и социальных приспособительных реакций, изученных в настоящее время лишь в общих чертах, что существенно влияет на степень реабилитации больных.

Анализ выявленных нервно-психических нарушений показал, что среди факторов, определяющих состояние нервно-психической сферы, ведущую роль играет травматический, связанный с повреждением шейного отдела спинного мозга, в значительной мере участвующего в регуляции психических функций высшего уровня.

Следует отметить, что травмы шейного отдела спинного мозга не исключают наличия сочетанной черепно-мозговой травмы и развития шокового состояния, что также способствует нарушению психики в отдаленном периоде. Это проявляется в виде нарушения пространственной ориентации, схемы тела, зрительных, слуховых и речевых расстройств, снижения внимания и памяти, общей истощаемости психических процессов.

Другим фактором, определяющим степень психических расстройств, является тяжесть последствий травмы шейного отдела спинного мозга в виде выраженных двигательных и чувствительных расстройств, нарушений функции тазовых органов, нарушений со стороны дыхательной и сердечно-сосудистой системы и обмена веществ.

Третьим значимым фактором формирования психических расстройств у больных в позднем периоде травматической болезни спинного мозга является социальный. Ограничения передвижения, зависимость больного с травмой шейного отдела позвоночника от постороннего ухода в повседневной жизни, социальная дезадаптация - всеэто определяет подавленное состояние психики, усугубляет функциональные и соматические расстройства. Необходимо подчеркнуть, что социальный фактор, являясь комплексным, включает в себя как чисто социальные, так и личностные компоненты. К социальным компонентам относятся такие, как установление инвалидности, невозможность выполнения работы, снижение уровня материального обеспечения, изоляция, сужение круга общения и ограничение видов занятий. К личностным - взаимоотношения в семье, трудности сексуальной жизни, проблемы рождения и воспитания детей, зависимость от постороннего ухода и т.п.

В результате изучения всех данных о состоянии больного с ТБСМ необходимо сформулировать полный функциональный диагноз, который должен включать следующие разделы:

1. Диагноз по МКБ 10 (Т 91.3) - последствия травмы спинного мозга или посттравматическая миелопатия.

2. Характер травмы (травматический вывих, переломовывих, перелом, ранение и т.д.), уровень повреждения, дата травмы. Например: осложненный компрессионный переломовывих С6-T2. Тип повреждения спинного мозга по шкале ASIA.

3. Уровень полного и неполного повреждения спинного мозга (чувствительный, двигательный с обеих сторон тела больного).

4. Имеющиеся синдромы поражения спинного мозга.

5. Имеющиеся осложнения.

6. Сопутствующие заболевания.

7. Степень ограничения функциональной активности и жизнедеятельности.

Иванова Г.Е., Цыкунов М.Б., Дутикова Е.М. Клиническая картина травматической болезни спинного мозга // Реабилитация больных с травматической болезнью спинного мозга; Под общ. ред. Г.Е. Ивановой, В.В. Крылова, М.Б. Цыкунова, Б.А. Поляева. - М.: ОАО «Московские учебники и Картолитография», 2010. - 640 с. С. 74-86.

В статье изложены современные представления, в том числе результаты собственных клинико-экспериментальных исследований, о роли нарушений нейротрофического контроля в формировании невральных и мышечных нарушений при вертеброгенной патологии и других заболеваниях.

The role of the disorders of neurotrophic control in vertebral neurology

The article describes the modern view, including results of its own clinical and experimental studies on the role of neurotrophic control violations in the formation of neural and muscular disorders in vertebral disease and other diseases.

В настоящее время существуют различные точки зрения на механизмы развития остеохондроза позвоночника и его неврологических проявлений. Предпочтительнее рассматривать в этом качестве сочетанное влияние различных факторов: микротравматизации, статодинамических нагрузок, инволютивных изменений, наследственного предрасположения, аутоиммунных, сосудистых, обменных и эндокринных нарушений, а также различных инфекционно-токсических воздействий. Какими бы ни были механизмы вертеброгенных заболеваний, наиболее существенным их компонентом является воздействие на нервные элементы, в первую очередь, на нервные стволы. Через них осуществляется и воздействие на мышцы, чье участие в реализации всей клинической картины общеизвестно .

В нашей клинике за последние 30 лет установлена и подробно исследована роль нарушений нейротрофического контроля (НТК) в патогенезе невральных и мышечных синдромов как при остеохондрозе позвоночника, так и при других заболеваниях .

До настоящего времени, по данным литературы, рассматривались два основных направления исследования нервной трофики применительно к мышечной деятельности: первое из них - вопросы адаптационно-трофического влияния симпатической нервной системы на мышцу; второе направление исследований нервной трофики рассматривает более узкий круг взаимоотношений, существующих между мотонейроном и иннервируемыми им мышечными волокнами. Оно включает вопросы: оказывает ли мотонейрон специфические трофические влияния на мышечное волокно?; опосредованы ли трофические влияния мотонейрона эффектами активности мышцы, или мотонейрон оказывает на мышцу два типа влияний: импульсные, несущие информацию о необходимости и характере мышечного сокращения, и трофические, реализуемые передачей ряда химических соединений от нерва к мышце?

Однако дальнейшее развитие науки поставило под сомнение адаптационно-трофическое влияние симпатической нервной системы на скелетную мускулатуру, и практически предпочтение отдано двигательным нервам. Проблему нервной трофики с конца ХХ века начали рассматривать по второму направлению, т.е. исходя из понимания нейротрофических влияний как конкретных взаимоотношений между мотонейроном и иннервируемыми им мышечными волокнами.

В задачу неврологов входит рассмотрение возможности анализа механизмов нейротрофических влияний у пациентов с вертеброгенной патологией с использованием электронейромиографических, тензометрических, биохимических методов и изучения результатов диагностических биопсий .

Правомерна ли вообще постановка такой задачи? Может ли соревноваться невролог, работающий в клинике, с экспериментатором, имеющим возможность проводить тончайшие исследования на животных? При ответе следует, прежде всего, помнить, что проблема нервной трофики всегда была традиционной для клиницистов-неврологов и возникла в недрах клинической патологии. Со времени первых описаний экстравертебральных мышечно-тонических, нейромиодистрофических и нейро-сосудистых синдромов был поставлен и в последующем постоянно дискутировался вопрос: являются ли они в своем происхождении рефлекторного или неврогенного характера? Ответ на этот вопрос можно получить при анализе результатов изучения вертеброгенных компрессионно-невральных и миофасциальных болевых проявлений с помощью современных биохимических, гистоморфологических и электрофизиологических исследований.

Общие сведения о нейротрофическом контроле

Под нервной трофикой понимают нейрональные влияния, необходимые для поддержания нормальной жизнедеятельности иннервируемых структур: нейронов и соматических клеток. Термин «нервная трофика» не вполне точен, так как выделяемые нервными окончаниями и оказывающие трофическое влияние вещества не относятся к питательным субстратам и не обеспечивают питание клетки-мишени. В большей степени они регулируют структурно-метаболические процессы, поэтому в последние годы наибольшее распространение получил термин «нейротрофический контроль».

При выпадении влияния нейрона на клетку-мишень, связанного с перерывом аксона, нарушаются или прекращаются синаптическое проведение и выделение нервными окончаниями нейромедиаторов и нейромодуляторов, реализующих функциональную стимуляцию тканевых структур и влияющих на их метаболизм. Эти нарушения вносят свой вклад в развитие трофических нарушений клеток-мишеней. Тем не менее, под нарушением собственно трофических влияний понимают изменения, связанные с прекращением действия специальных трофических факторов, образующихся в нейронах и иннервируемых структурах - так называемых нейротрофических факторов (НТФ) или трофинов .

НТФ - группа веществ белковой природы, обеспечивающих нормальную жизнедеятельность, выживание, рост, развитие и дифференцировку нейронов и определение нейромедиаторной природы нейронов. В отличие от нейромедиагров НТФ не выполняют функцию синаптической передачи сигнала, они также не модулируют связывание рецепторами иейромедиатров, как это делают иейромодуляторы. НТФ осуществляют медленные несинаптические межклеточные взаимодействия и обусловливают долговременные пластические изменения клеток-мишеней. Установлено, что эффекты НТФ связаны преимущественно с их влиянием на процессы транскрипции, трансляции и посттрансляциоиной модификации , что сближает их по механизму действия с пептидными и стероидными гормонами.

Таковы общие сведения о НТК. Рассмотрим более подробно частный случай НТК в системе «мотонейрон-мышечное волокно».

Нейротрофический контроль в системе «мотонейрон-мышечное волокно»

В нервно-мышечном синапсе секреция из терминалей ацетилхолина, его взаимодействие со специфическими рецепторами, встроенными в постсинаптическую мембрану, и целый ряд последующих событий приводят к сокращению скелетных мышечных волокон. Весь процесс развивается в течение десятков миллисекунд. Через тот же синапс осуществляется нейротрофический контроль (НТК). О его наличии судят по состоянию параметров, характеризующих возможность выполнения мышечными волокнами контрактильной функции. При отсутствии же нервно-мышечных синапсов в скелетных мышечных волокнах развивается денервационный синдром. Простейший экспериментальный подход для доказательства НТК, реализуемого через синапсы - денервация мышцы путем перерезки нервов.

НТК существенно отличается от собственно синаптической передачи. Время, необходимое для реализации этих процессов, составляет миллисекунды для собственно передачи и последующего сокращения и десятки минут и часы - для развития явлений, свидетельствующих о наличии нейротрофического влияния мотонейронов. Общие эффекты НТК - дифференцировка и поддержание дифференцированного состояния мышечных волокон .

Относительно рассматриваемой модели «мотонейрон-скелетное мышечное волокно» под НТК можно понимать долговременное влияние мотонейрона на мышечные волокна, выражающееся в поддержании дифференцированного состояния и осуществляемое вне прямой связи с синаптической передачей и последующей двигательной активностью. Таким образом, для скелетных мышечных волокон инструктирующими клетками, согласно определению, являются элементы нервной системы, а именно мотонейроны.

В этой связи необходимо акцентировать внимание на двух важных обстоятельствах. Во-первых, в системе «мотонейрон-мышечное волокно» существуют двусторонние трофические влияния, т.е факторы, образующиеся в мышечном волокне, участвуют в поддержании жизнеобеспечения и регуляции функции мотонейрона. Во-вторых, следует учитывать, что мотонейрон находится под НТК других нейронов - верхнего мотонейрона вставочных нейронов, а также глиальных клеток, и эти элементы опосредованно, через влияние на мотонейрон, также могут оказывать нейротрофическое влияние на мышечное волокно. Чувствительные нейроны реализуют НТК по отношению к интрафузальным, а не экстрафузальным волокнам. Что касается симпатической иннервации, то существуют довольно убедительные данные об отсутствии прямой синаптической иннервации мышечных волокон у млекопитающих . Типичные феномены, по наличию которых судят о прекращении НТК скелетных мышечных волокон, при длительной симпатической денервации мышц не развиваются .

Согласно современным представлениям , в реализации трофического влияния нерва на мышцу принимают участие как импульсные, так и неимпульсные механизмы. Существует несколько экспериментальных подходов, которые позволили убедительно показать значение различных механизмов НТК в поддержании дифференцированного состояния скелетных мышц.

  1. Перерезка двигательного нерва, при которой мышцы лишаются как электрических влияний, так и воздействия НТФ со стороны мотонейрона. При этом установлено, что скорость развития денервационных изменений в скелетных мышечных волокнах зависит от уровня перерезки: чем ближе к мышце произведена перерезка, тем быстрее наступают денервационные изменения.
  2. Изучение «вклада» аксонного транспорта в НТК в экспериментах с помощью блокады аксонного транспорта путём аппликаций статокинетиков на двигательный нерв (импульсация по аксону при этом не нарушается).
  3. Исследование роли импульсной активности в реализации НТК в экспериментах с принудительной электрической стимуляцией мышцы с нехарактерной для нее частотой.
  4. Определение влияния так называемых быстрых и медленных мотонейронов на различные мышечные волокна в экспериментах с перекрестной реиннервацией, когда к мышце подшивали «чужой» для нее нерв.

Рассмотрим отдельные механизмы НТК в системе «мотонейрон-скелетное мышечное волокно». В основе неимпульсного механизма НТК лежит обмен НТФ между нейроном и иннервируемым мышечным волокном. Как известно, аксон обеспечивает не только проведение возбуждения, но и транспорт различных веществ из тела нейрона в нервное окончание и в обратном направлении. Выделяют три вида аксонного транспорта:

1. Быстрый антероградный транспорт. Его скорость составляет приблизительно 400 мм/сут. Быстрым аксонным транспортом переносятся преимущественно вещества и структуры, необходимые для синаптической деятельности: митохондрии, пептидные медиаторы и нейромодуляторы, ферменты, необходимые для синтеза медиатора (в частности, ацетилхолинтрансфераза), а также липидные и белковые компоненты мембраны.

2. Медленный антероградный транспорт, его скорость составляет 1-5 мм/сут. Он обеспечивает перенос компонентов цитоскелета (в частности, субъединицы микротрубочек и нейрофиламентов), некоторых ферментов, необходимых для промежуточного метаболизма в аксоне, а также, вероятно, и большинства НТФ.

3. Быстрый ретроградный транспорт. Его скорость составляет 200-300 мм/сут. Таким образом, с клетки мышечного волокна поступают поврежденные компоненты мембран и органелл, а также абсорбированные экзогенные вещества, в том числе и трофические факторы.

Аксональный транспорт обеспечивают компоненты цитоскелета аксона: микротрубочки, микрофиламенты, нейрофиламенты. Быстрый антероградный и ретроградный транспорт - энергозависимый процесс, для которого необходимо присутствие АТФ и ионов Са 2+ . Перенос веществ осуществляется в везикулах, которые поступательно движутся вдоль микротрубочек благодаря функции кинезинового и динеинового молекулярных моторов: первый обеспечивает движение от тела клетки (т.е. антероградный транспорт), второй – в обратном направлении (т.е. ретроградный транспорт). Механизмы, обеспечивающие медленный антероградный транспорт, пока не изучены, предполагают также участие молекулярных моторов

Вещества, разрушающие микротрубочки и нейрофиламенты (в частности, колхицин, винбластин и др.), недостаток АТФ и метаболические яды, вызывающие дефицит энергии, нарушают аксональный транспорт. Аксональный транспорт нарушается при поражении аксонов вследствие дефицита витаминов В 1 и В 6 , отравления солями тяжелых металлов, воздействия некоторых лекарственных средств, а также при сахарном диабете и сдавлении нервов. Кроме того, аксональный транспорт нарушается при первичном поражении мотонейрона и недостатке НТФ, в том числе вырабатываемых иннервируемыми клетками.

Нарушения НТК представляют собой один из важнейших патогенетических факторов многих заболеваний центральной и периферической нервной системы. Общеизвестна ведущая роль расстройства НТК в патогенезе периферических нейропатий:

1. Мутации в генах НТФ или рецепторов к ним обусловливают развитие ряда наследственных нейропатий. В частности, мутации в гене Trk типа А обусловливают развитие некоторых форм наследственной сенсорно-вегетативной нейропатии (тип IV); нарушения экспрессии фактора роста нервов рассматривают как возможную причину семейной дизавтономии (синдрома Райли-Дея) и т.д.

2. Нарушения синтеза и транспорта фактора роста нервов - важный патогенетический фактор диабетической полинейропатии, а нарушения синтеза инсулиноподобного фактора роста-1 могут обусловливать повышенную чувствительность нервов к различным неблагоприятным факторам у больных сахарным диабетом.

3. Наконец, нарушение аксонального транспорта и, следовательно, НТК составляет основу многих токсических и лекарственных нейропатий.

Приведенные выше примеры демонстрируют случаи первичного нарушения синтеза или транспорта НТФ. Тем не менее, следует учитывать, что при любых поражениях нервов наблюдаются вторичные нарушения аксонального транспорта вследствие отека, сдавления аксонов или метаболических нарушений в них, поэтому расстройство НТК - неотъемлемая патогенетическая составляющая нейропатий любой этиологии.

В настоящее время получены сведения о роли нарушений аксоплазматического транспорта при заболеваниях периферического двигательного нейрона у человека и других нейродегенеративных заболеваниях. Но до 90-х годов XX века не было никаких данных о роли нарушения НТК в формировании невральных и мышечных синдромов остеохондроза позвоночника.

Основные механизмы нарушения нейротрофического контроля при остеохондрозе позвоночника

Существует два основных механизма нарушения НТК при остеохондрозе позвоночника. Во-первых, в условиях нарушения нормальных взаимоотношений между корешком и диском возможно изолированное нарушение аксоплазматического транспорта при сохранной передаче импульсов. Согласно концепции двойного сдавления, сформулированной Upton и McComas (1973), воздействие на корешки может нарушать аксональный транспорт, что вследствие нарушения метаболизма в аксоне обусловливает повышенную чувствительность нервов к различным неблагоприятным факторам, в частности к травматическим воздействиям. Естественно предположить, что в результате диско-радикулярного конфликта происходит изолированное нарушение аксоплазмагического транспорта при сохранной передаче импульсов вследствие субклинического воздействия на корешки. Данного воздействия недостаточно для развития клинически значимой радикулопатии, но нарушения аксонального транспорта способствуют не только повышенной ранимости нервов, но и формированию экстравертебральных мышечных проявлений в результате нарушения и выпадения НТК.

Во-вторых, возможен также рефлекторный механизм нарушения нейротрофического контроля по двигательному нерву в результате изменения функционального состояния мотонейронов под влиянием патологической импульсации из поврежденного позвоночно-двигательного сегмента из участков нейромиофиброза при постуральных и викарных перегрузках.

Экспериментальный подход в обосновании рефлекторных нарушений НТК при остеохондрозе позвоночника

С целью уточнения роли нарушения НТК (при интактности импульсной проводимости) в формировании триггерных зон миофиброза в нашей клинике проведены экспериментальные исследования на животных, в ходе которых убедительно продемонстрирована идентичность клинических, морфологических, биохимических и нейрофизиологических изменений как при прямом, так и рефлекторном нарушении аксонального транспорта. В качестве экспериментальной модели выбран метод аппликации цитостатического вещества колхицина на корешок L 5 , а также метод рефлекторного воздействия на аксоплазматический транспорт. Колхицин в определенной концентрации, воздействуя на корешок, нарушает проводимость аксоплазматического тока и, сохраняя импульсную проводимость, моделирует некоторые возможные варианты экстравертебральной патологии с преимущественным нарушением аксонного тока .

У экспериментальных животных создавались очаги поражения 1) в корешковом нерве L 5 , 2) межпозвоночном диске и 3) икроножной мышце. Такая локализация очагов поражения была необходима для выяснения рефлекторного воздействия на аксоплазматический ток с дальнейшим нарушением нейротрофического неимпульсного контроля. Мы учитывали, что у пациентов с сочетанными невральными и миодистрофическими нарушениями поясничного остеохондроза обычно присутствует несколько очагов поражения (по крайней мере, не меньше двух: вертебрального и экстравертебрального) и, моделируя эту ситуацию у экспериментальных животных, формировали различные очаги поражения.

В зависимости от вида поражения все животные были разделены на группы: 1) с аппликацией колхицина на корешок L 5 ; 2) с поврежденным диском; 3) с аппликацией колхицина и пораженной икроножной мышцей; 4) с повреждением мышцы и диска; 5) контрольные животные.

Наши исследования подтвердили известный факт, что цитостатик (колхицин), вызывая блокаду аксоплазматического транспорта (при сохранной импульсной проводимости), приводит к снятию трофического контроля. Подобным оказался эффект рефлекторного воздействия на мышцу в том случае, когда кроме раздражения рецепторов межпозвоночного диска животного выполнялось локальное повреждение на периферии, проявляющееся в изменении метаболизма мышц: 1) мышца теряет присущий ей уровень дифференцировки, о чем свидетельствует появление участков перимизия, воспалительных клеток вокруг некротизированных волокон как I, так и II типа; 2) происходит сдвиг в гистохимическом типовом составе - замедление «быстрых» и убыстрение «медленных» мышечных волокон, т.е. обнаруживаются признаки дедифференциации; 3) происходит изменение изоферментного состава спектра лактатдегидрогеназы (увеличение активности быстромигрирующих в «быстрой» мышце, а в «медленной» - тенденция к возрастанию активности изоформы ЛДГ 2); 4) отмечается изменение электрофизиологических параметров за счет перестройки на различных уровнях регуляции мышечного сокращения, т.е. характеристика целой мышцы зависит от стадий денервационно-реиннервационного процесса - на ранних стадиях обнаруживается сдвиг гистограмм влево, уменьшение силы и скоростных характеристик одиночного сокращения, а на поздних этапах происходит их возрастание и сдвиг гистограмм вправо (признаки укрупнения территорий двигательных единиц (ДЕ) и увеличение количества мышечных волокон в них). Указанные изменения, наблюдаемые в мышце, носят характер денервационноподобных.

Клинически у животных с аппликацией колхицина на спинальный нерв, а также при повреждении мышцы и диска в интактных мышцах, были обнаружены болезненные узелки - так называемые участки миофиброза. По всей вероятности, механизм формирования миофиброза обусловлен нарушением нейротрофического неимпульсного контроля в результате блокады аксоплазматического транспорта. Очевидно, формирование миофиброза является вторичным, как результат выключения трофического влияния нервных волокон, обеспечивающего поддержание дифференцированного состояния скелетных мышечных волокон.

Мы убедились, что признаки денервационно-реинервационного процесса обнаружены не только в эксперименте, но и также и у пациентов с рефлекторными миодистрофическими синдромами. Можно полагать, что причиной поражения ишиокруральных мышц (передней большеберцовой, медиальной порции икроножной) является «скрытая», или субклиническая стадия компрессия корешков L5 и S1, ведущей к развитию денервационно-реинервационного процесса и реорганизации двигательных единиц в мышце. Очевидно, выявляемая перестройка структуры двигательных единиц происходит не только вследствие частичной денервации мышцы, а также за счет механизмов, аналогичных тем, которые обеспечивают «транснейрональное» включение спрутинга в мышцах с сохранной иннервацией . По всей вероятности, они включаются при ирритации синувертебрального возвратного нерва Люшка, в процессе поражения позвоночно-двигательного сегмента и формирования неадекватного двигательного стереотипа.

Заключение

Таким образом, проведенные нами исследования показали, что при нарушении долговременного нейротрофического влияния, реализуемого аксонным транспортом, как у экспериментальных животных (наложение колхицина или рефлекторное воздействие на аксональный транспорт), так и у пациентов с сочетанными компрессионно-невральными проявлениями при вертеброгенной патологии происходит следующее: уменьшаются тетанический индекс и площадь поперечного сечения, замедляются «быстрые» и убыстряются «медленные» мышечные волокна. Это признаки дедифференциации. Выключение же импульсной активности наряду с атрофией мышечных волокон вызывает увеличение тетанического индекса, сопровождающееся удлинением времени сокращения. При сравнении полученных данных установлено сходство механомиографических, биохимических и морфогистохимических сдвигов в эксперименте и при обсуждаемой патологии человека. Исключение составляют волокна-мишени и преимущественная атрофия волокон II типа. Эти признаки отсутствовали у животных всех групп; они, по-видимому, непатогномоничны для нарушения нейротрофического неимпульсного контроля. Общность данных тенденций указывает на определенную роль нарушения аксонного транспорта в формировании миофасциальных триггерных зон. Это нарушение, как следует из результатов экспериментальных исследований, возможно и без пересечения корешка, т.е. в результате рефлекторного воздействия на аксонный транспорт.

Вероятно, формирование миофасциальных триггерных зон при различных заболеваниях имеет много общих патогенетических механизмов. Начальные же звенья патологического процесса различны. У больных с вертеброгенными поражениями периферической нервной системы первоначально, видимо, происходят изменения функциональной морфологии двигательных единиц. Эти изменения вызывают денервационно-реиннервационные изменения и нарушения нейротрофического неимпульсного контроля.

Результаты наших исследований позволяют предположить, что в основе вертеброгенных неврально-миодистрофических поражений лежат изменения периферической нервной системы, заключающиеся в нарушении функций и дегенерации аксональных нейрофиламентов и микротрубочек. Эти первичные изменения могут быть вызваны воздействием цитостатика на корешок, а при наличии периферического очага эти изменения могут происходить и по рефлекторному механизму. При этом на периферии, в мышцах возникают вторично нейродистрофические нарушения из-за изменений трофических мотонейрональных влияний.

С внедрением современной теории нейротрофического контроля в клиническую практику получило развитие совершенно новое направление в изучении механизмов формирования мышечных нарушений при различных заболеваниях. Как известно, посттравматические иммобилизационные контрактуры являются серьезным осложнением при лечении травм опорно-двигательного аппарата. В исследованиях нашего сотрудника Д.Л. Галямова было доказано, что спровоцированные травмой изменения в нервной системе приводят к рефлекторному нарушению синтеза нейротрофических факторов, в сегментарных мотонейронах, вследствие чего формируется миогенный компонент указанных контрактур. Есть основание полагать, что преобладание денервационных изменений в мышцах, особенно при длительных сроках бездействия, обусловлено тормозящим влиянием супраспинальных структур не только на сегментарные мотонейроны, но и на чувствительные. Кроме того, нарушается отлаженный механизм супраспинально-сегментарных взаимодействий, что проявляется в форме фасцикуляциоподобного феномена. Сущность его заключается в том, что торможение активности двигательной единицы у пациента, которую он произвольно активировал, происходит с трудом.

Снижение нейротрофической потенции мотонейронов подтверждается гистологически обнаруживаемыми изменениями нисслевского вещества, а также изменением содержания РНК в соме клетки. Этот факт показывает, что мотонейрон является клеткой-мишенью для трофического воздействия других групп нейронов.

Грубые денервационные изменения, гипотрофия мышц обычно сочетаются с гипотонией. В наших исследованиях у больных наблюдалось повышение тургора мягких тканей. Этот факт принято объяснять развитием миофиброза, но при банальной постельной гиподинамии (гипокинезии) также отмечается увеличение доли соединительной ткани при отсутствии гипертонии. Для объяснения данного противоречия целесообразно использовать феномен Гинецинского-Орбели и тономоторный феномен. Известно, что при перитоните, мышцы брюшного пресса формируют защитный дефанс. Способность мышц в течение длительного времени противодействовать утомлению объясняется параллельной гиперактивностью симпатической нервной системы, оказывающей адаптивное влияние. Одновременная стимуляция двигательного и симпатического нервов усиливает ресинтез АТФ, необходимый для работы актин-миозинового комплекса. Это оказывается возможным, вероятно, благодаря повышенному гидролизу креатинфосфата, так как показано, что в первые сутки после травмы в мышцах значительно снижается концентрация креатинфосфата, и, кроме того, АТФ. В условиях нарушения нейротрофического обеспечения мышечных волокон и перехода с окислительного декарбоксилирования глюкозы на гликолитический путь концентрация АТФ может стать ниже критической, и разовьется так называемое трупное окоченение.

Нам представляется возможным такой путь формирования гипертонуса иммобилизованных мышц. Вызванный болевыми ощущениями мышечный спазм трансформируется в более устойчивое состояние, и поэтому ни наркоз, ни новокаиновые блокады не восстанавливают полного объема движений.

В результате установления миогенного компонента посттравматических и иммобилизационных контрактур была изменена стратегия лечебно-реабилитационных мероприятий . Так, применение электростимуляции в сочетании с изометрической гимнастикой на иммобилизационном этапе лечения травм длинных трубчатых костей позволяет снизить степень выраженности контрактуры в сравнении с контрольной группой и сократить сроки лечения на две недели как в общем, так и в стационаре. В нашей лаборатории М.Б. Гарифьяновой была впервые создана экспериментальная модель вторичных контрактур мимических мышц посредством передавливания нерва и аппликации колхицина. Создание моделей, наиболее близких к клиническим условиям, позволило установить влияние нейротрофического контроля на формирование синдромов вторичных контрактур мимических мышц. В результате наших исследований стало возможным разработать комплексный клинико-электрофизиологический и гистохимический алгоритм для ранней диагностики вторичной контрактуры, а также предложить лечебно-реабилитационные мероприятия.

Усилиями Ф.И. Девликамовой многие миофасциальные болевые синдромы были не только изучены и описаны, но и осмыслены как нарушения управления двигательными актами и интимными нейрофизиологическими и морфологическими процессами в поперечно-полосатой мускулатуре.

Клинические идеи в вертеброневрологии и изучении роли нарушения нейротрофического контроля в патогенезе невральных и миофасциальных болевых синдромов позволили углубить представления об обратной связи из опорно-двигательного аппарата в адрес центра, о взаимодействии анализаторов. Это обеспечило новые революционные подходы в лечении пациентов с вертеброгенной патологией.

Ф.А. Хабиров

Казанская государственная медицинская академия

Хабиров Фарит Ахатович — доктор медицинских наук, профессор, заведующий кафедрой неврологии и мануальной терапии КГМА

Литература:

1. Айдаров, В.И. Физическая реабилитация больных с иммобилизационными контрактурами и их раннее предупреждение: автореф. дис. … кандидата мед. наук / В.И. Айдаров. - Казань, 1997. - 18 с.

2. Богданов, Э.И. Общие закономерности изменений сократительных свойств при патологии нервной регуляции скелетных мышц: автореф. дис. … д-ра мед. наук / Э.И.Богданов. - Казань, 1989. - 24 с.

3. Волков, Е.М. Нейротрофический контроль функциональных свойств поверхностной мембраны мышечного волокна / Волков, Е.М., Г.И. Полетаев // Механизмы нейрональной регуляции мышечной функции. - Л.: Наука, 1988. - С. 5-26.

4. Галямов, Д.Л. Нарушение нейротрофического контроля мышц при посттравматических иммобилизационных контрактурах: автореф. … канд. мед. наук / Д.Л. Галямов. - Казань, 1995. - 14 с.

5. Гарифьянова, М.Б. Вторичная контрактура мимической контратуры (клинические нейрофизиологические и морфогистохимические аспекты. Патогенез. Лечение): автореф. дис. … д-ра мед.наук / М.Б. Гарифьянова. - Казань, 1997. - 28 с.

6. Гехт, Б.М. Трофический потенциал мотонейрона и проблема компенсаторной иннервации в патологии / Б.М. Гехт, Л.Ф. Касаткина, А.Г. Санадзе, И.А. Строков // Механизмы нейрональной регуляции мышечной функции. - Л.: Медицина, 1988. - С. 53-78.

7. Девликамова, Ф.И. Морфофункциональная организация скелетных мышц у больных с миофасциальным болевым синдромом (клинико-патофизиологические исследования): автореф. дис. … д-ра мед. наук / Ф.И. Девликамова. - Казань, 2004. - 25 с.

8. Попелянский, Я.Ю. Ортопедическая неврология (вертеброневрология): руководство для врачей / Я.Ю. Попелянский. - Казань, 1997. - Т. 1- 554 с.

9. Улумбеков, Э.Г. Нейротрофический контроль фазных мышечных волокон / Э.Г. Улумбеков, Н.П. Резвяк // Нервный контроль структуно-функциональной организации мышцы. - Л.: Наука, 1980. - С. 84-104.

10. Хабиров, Ф.А. Неврально-мышечные трофические нарушения при поясничном остеохондрозе: автореф. дис. д-ра мед.наук / Ф.А. Хабиров. - М., 1991. - 28 с.

11. Хабиров, Ф.А. Руководство по клинической неврологии позвоночника / Ф.А. Хабиров. - Казань: Медицина. - 2006. - 518 с.

12. Rotshen-Ker., S. The trans neuronal induction of sprouting and synapse formation in intact mouse muscles / S. Rotshen-Ker., M. Tal // J. Physiol., 1985. - Vol. 360. - P. 387-396.

13.Upton, A.R. The double crish in nerve entrapment Syndromes / A.R. Upton, A.J. Mc Comas // Lancet. - 1973. - Vol. 2, № 7826. - P. 359-362.



Понравилась статья? Поделитесь ей