Контакты

Мелатонин и его биологические функции. Мелатонин и канцерогенный эффект ночной смены. Меры по нормализации уровня мелатонина


Для цитирования: Левин Я.И. Мелатонин и неврология // РМЖ. 2007. №24. С. 1851

Мелатонин (N - ацетил - 5 - метокситриптамин) - является индольным соединением, вырабатываемым эпифизом, сетчаткой и кишечником. Его метаболизм представлен на рисунке 1.

Мелатонин (М), образно называют «гормоном ночи», «Дракула-гормоном» или «биохимическим аналогом темноты».
Основные этапы биосинтеза мелатонина и временная динамика его образования сегодня хорошо изучены (рис. 2). Синтез мелатонина осуществляется в эпифизе, его источником служит триптофан, который поступает в пинеалоциты из сосудистого русла и через 5-окситриптофан превращается в серотонин. Лимитирующим фактором в синтезе гормона служит активность фермента N-ацетилтрансферазы (NАТ), контролирующего образование предшественника - N-ацетилсеротонина, в дальнейшем при участии гидроксииндол-О-метил-трансферазы (ГИОМТ) превращающегося в сам мелатонин. Принципиально важным является факт циркадианной (околосуточной) периодичности выработки в пинеалоците биологически активных соединений. Синтез мелатонина эффективно происходит только с наступлением темноты и падает в светлую фазу суток - факт впервые показанный R. Wurtman в 1960 году. Достаточно короткого светового импульса (силой 0.1-1 lux), чтобы подавить этот процесс. В дневные часы в ткани железы, напротив, накапливается серотонин.
Дневной ритм продукции мелатонина зависит от активности NАТ в сетчатке, которая в свою очередь зависит от ионов кальция, дофамина и гамма-амино-мас-ля-ной кислоты (ГАМК).
Сетчатка является независимым и важным местом продукции мелатонина, по содержанию которого она стоит на втором месте после эпифиза. По-видимому, сетчатке принадлежит определенная роль в поддержании уровня плазменного мелатонина в случае ослабления эпифизарной активности. Предполагается, что ДА (биохимический аналог света) передает пигментному эпителию сигнал о свете, а мелатонин (биохимический аналог темноты) - о темноте, причем баланс между этими двумя нейрогормонами регулирует функцию пигментного эпителия при изменении адаптации.
На образовании мелатонина заметно сказывается целый ряд внешних и внутренних факторов. Особенно значимым надо признать длину фотопериода, поскольку величина секреции находится в обратных отношениях с продолжительностью светового дня. В случае инверсии светового режима, спустя несколько суток, извращается и суточная динамика уровня мелатонина. Повреждение любого звена пути регуляции синтеза гормона, начиная с сетчатки, приводит к снижению ночной секреции мелатонина, распаду циркадианного ритма на отдельные ультрадианные составляющие. Из эндогенных факторов существенное значение могут иметь характер гормональной активности, особенно состояние гонад, а также возраст. Из-за возрастной инволюции железы наблюдается прогрессивное снижение амплитуды и величины секреции гормона на протяжении суток.
Мелатонин является многофункциональным гормоном, что определяется в том числе и значительной представленностью его рецепторов в различных образованиях головного мозга. Наиболее высоки уровень гормона и плотность мелатониновых рецепторов (МТ1, МТ2 и МТ3) в переднем гипоталамусе (преоптическая, медиобазальная области), за которыми следуют промежуточный мозг, гиппокамп, стриатум и неокортекс. Через эти рецепторы мелатонин способен ограничивать поведенческие нарушения, обусловленные стрессом, прямо вмешиваясь в работу эндокринных центров гипоталамуса и неэндокринных стресс-организующих структур мозга. Мелатониновые рецепторы описаны в различных эндокринных органах, начиная с гонад, где их содержание особенно велико, и кончая надпочечниками. Значительная плотность специализированных рецепторов обнаружена и в клетках самого эпифиза. Повышение концентрации мелатонина в крови с наступлением темноты снижает у человека температуру тела, уменьшает эмоциональную напряженность, индуцирует сон, а также незначительно угнетает функцию половых желез, что отражается в задержке пролиферации опухолевых клеток молочной и предстательной желез. Мелатонин участвует в гормональном обеспечении околосуточного и сезонного периодизма поведенческой активности.
Мелатонин является одним из самых мощных эндогенных антиоксидантов. Антиоксидантная активность мелатонина определена во всех клеточных структурах, включая ядро клетки. Мелатонин обладает протективными свойствами в отношении свободно-радикального поражения ДНК, белков и липидов. Мелатонин способен связывать свободные радикалы (гидроксил, свободный кислород, пероксинитрит и т.д.) и стимулировать активность антиоксидантной системы (ферменты супероксид дисмутаза, глутатион пероксидаза, глутатион редуктаза, глюкозо-6-фосфат ДГ). Мелатонин обеспечивает защиту клеток мозга по меньшей мере двумя способами: разложением пероксида водорода до воды и утилизацией свободных гидроксильных радикалов.
Доказанные биологические эффекты мелатонина многообразны: снотворный, гипотермический, антиоксидантный, противоопухолевый, адаптогенный, синхронизационный, антистрессовый, антидепрессантный, иммуномодулирующий.
В настоящее время роль мелатонина эпифиза в таких явлениях, как внутрисуточная и сезонная ритмика, сон-бодрствование, репродуктивное поведение, терморегуляция, иммунные реакции, внутриклеточные антиокислительные процессы, старение организма, опухолевый рост и психиатрические заболевания - представляется несомненной.
Исходя из вышеперечисленных биологических эффектов М следует предположить его важную роль в терапии многих неврологических заболеваний.
Нарушения цикла «сон-бодрствование». Первые прямые исследования действия мелатонина на сон человека с использованием полиграфической регистрации были выполнены в 70-е годы ХХ века. Испы-туемым вводили внутривенно большие дозы мелатонина - от 50 мг до 1 г. Результаты таких исследований были противоречивы: вечернее в/в введение 50 мг мелатонина здоровым испытуемым вызывало приступ сонливости и значительно сокращало период засыпания без изменений структуры ночного сна; при утреннем и вечернем оральном приеме такой же дозы сонливость не наступала; вечерний оральный прием 80 мг мелатонина на фоне инсомнии, вызванной предъявлением звукового шума, значительно улучшал структуру ночного сна. Ежедневный прием 1 г мелатонина в течение 6 дней увеличивал представленность стадии 2 медленного сна у здоровых испытуемых, снижал представленность стадии 4 и увеличивал плотность быстрых движений глаз во время периодов быстрого сна.
В серии исследований P. Lavie с сотр. (1994, 1995) мелатонин (5 мг) достоверно ускорял засыпание, увеличивал представленность стадии 2 в последующем сне, независимо от времени его приема и удлинял продолжительность сна.
В наших исследованиях (А.М. Вейн, Я.И. Левин и сотр. 1998-1999 гг.) проведено изучение действия ежевечернего приема Мелаксена (содержит 3 мг мелатонина) в течение 5 дней на субъективную оценку качества ночного сна у 40 больных первичной инсомнией (возраст - 25-75 лет) Среди испытуемых половина была «совами», а половина - «жаворонками». 90% испытуемых жаловались на трудности засыпания, 70% - на час-тые ночные пробуждения, 60% - на поверхностный сон, 50% - на трудности засыпания после пробуждения среди ночи, 65% - на ранние утренние пробуждения. В качестве причины инсомнии испытуемые чаще всего называли жизненные события и психический стресс. 2/3 из них уже имели опыт применения снотворных, обычно бензодиазепинов. За неделю до начала исследований все испытуемые прекращали прием любых снотворных и успокоительных препаратов. До и после применения Мелаксена пациенты заполняли анкеты субъективной балльной оценки сна. Полученные данные подвергались математическому анализу с применением методов непараметрической статистики. Обна-ружено достоверное улучшение субъективных показателей сна по группе в целом, причем наиболее выраженный эффект состоял в ускорении засыпания; это важный показатель эффективности Мелаксена в качестве снотворного, поскольку именно этот эффект неоднократно ранее описан в литературе. В целом эффективность Мелаксена как снотворного была оценена и врачами, и пациентами одинаково и составила по 5-балльной шкале 3,55. Безопасность Мелаксена оказалась очень высокой; она также оценена одинаково в 4,9 балла, что означает, что Мелаксена практически не дает побочных эффектов и осложнений. При разделении испытуемых на 2 возрастные группы - до 40 лет (20 человек) и старше (20 человек) - было обнаружено, что эффективность мелатонина одинакова в обеих группах. При разделении испытуемых на 2 группы по эффекту воздействия Мелаксена на сон - «слабую» (медиана суммарной балльной оценки качества сна возросла не более, чем на 3 единицы, 20 человек) и «сильную» (возрастание более, чем на 3 балла, 20 человек) - обнаружено, что во второй достоверно преобладали испытуемые с исходно более резко выраженными субъективными нарушениями сна. Это означает, что чем хуже исходные субъективные показатели сна, тем сильнее положительное влияние Мелаксена.
Согласно гипотезе А. Борбели (Borbely) с соавт. (1988), циркадный и гомеостатический «осцилляторы» являются независимыми друг от друга, так что состояние человека в каждый данный момент является результатом «алгебраического суммирования» воздействия этих двух механизмов. В настоящее время теория Борбели является общепризнанной для описания состояний бодрствования и медленного сна, хотя и остается неприменимой для описания быстрого - парадоксального - сна.
В соответствии с этой концепцией и исходя из корреляции между субъективно ощущаемым и объективно подтвержденным ежевечерним нарастанием сонливости, с одной стороны, и началом роста уровня мелатонина в крови, с другой, предполагается, что циркадные осцилляции человека, его «биологические часы», определяются деятельностью двух реципрокных механизмов - выбросом мелатонина эпифизом и ритмической импульсацией нейронов супрахиазмального ядра (СХЯ). По мнению ряда авторов, роль мелатонина состоит скорее в открытии так называемых «ворот сна» (sleep gates), в создании «предрасположенности ко сну», в торможении механизмов бодрствования, чем в прямом воздействии на сомногенные структуры. Открытию «ворот сна» предшествует период повышенной активации человека - так называемый «запретный период» («запретная зона» - forbidden zone) для сна, который довольно резко сменяется «открытием ворот». Имеются некоторые свидетельства в пользу предположения о том, что эта «запретная временная зона» сна представляет собой пик ежедневного цикла бодрствования, поскольку сочетается с суточным пиком температуры тела. Начало секреции мелатонина у человека, приходящаяся обычно на середину «запретного периода», способствует сглаженному, плавному переходу от бодрствования ко сну.
Однако возникает вопрос - связаны ли мягкие седативные и гипногенные эффекты мелатонина с его прямым воздействием на мозговые системы поддержания бодрствования и механизмы медленного сна или же они лишь отражают способность мелатонина вызывать фазовый сдвиг циркадного осциллятора? Похоже, что оба эффекта имеют место при введении физиологичных доз мелатонина, причем они могут алгебраически суммироваться друг с другом в зависимости от момента введения. Из-за высокой насыщенности СХЯ и прилежащих областей преоптической области высокоаффинными рецепторами мелатонин, этот гормон наряду с рядом других физических (яркий свет) и биохимических факторов (в числе последних - нейромедиаторы глутаминовая кислота и серотонин, а также нейропептиды NPY - «нейропептид-тирозин» и SP - «вещество П») способен оказывать мощные модулирующие воздействия на активность главного осциллятора в организме млекопитающих. Если мелатонин вводится в утренние часы, то он вызывает задержку циркадной фазы человека, а если в вечерние - то, наоборот, сдвиг фазы «вперед». Эти фазовые сдвиги у человека не превышают 30-60 минут в сутки. Таким образом, путем ежедневного приема мелатонина можно добиться сдвига суточного цикла активности-покоя на несколько часов в ту или другую сторону, что бывает необходимо при трансмеридианальных перелетах или при сменной работе.
Фибромиалгия. Клиническая картина фибромиалгии складывается из мышечных болей, депрессии и инсомнии. Проведено изучение действия ежевечернего приема 1,5 мг мелатонина (Мелаксен) в течение 10 дней на субъективную оценку качества ночного сна и его объективные характеристики у 11 больных фибромиалгией [Вейн А.М., Левин Я.И., Ханунов И.Г., 1998-2000 гг.]. Полисомнография подтвердила нарушения ночного сна в виде затрудненного засыпания, удлинения латентного периода поверхностного сна и парадоксального сна, подавления глубокого сна, уменьшения количества завершенных циклов сна, увеличения периодов бодрствования и движений во сне и т.д. После завершения курса лечения отмечалось субъективное улучшение сна, подтвержденное полиграфической регистрацией: облегчение засыпания, укорочение периодов бодрствования внутри сна и т.д. Отмечалось также улучшение самочувствия, снижение уровня депрессии и улучшение тонкой моторики рук в дневное время. Сделан вывод, что мелатонин оказывает положительное влияние на качество сна при его нарушениях. У этих же пациентов несколько снизились уровень боли и депрессия.
Инсульт. Нами [А.М. Вейн, Я.И. Левин, Р.Л. Гасанов 2000 г.] проведено изучение действия ежевечернего орального приема Мелаксена в течение 10 дней на субъективную оценку качества ночного сна и его объективные характеристики у 15 больных в острейшем периоде ишемического инсульта; их показатели сравнивались с таковыми у 15 здоровых добровольцев (контроль), соответственно подобранных по полу и возрасту. Все исследуемые были подвергнуты клини-ко-невроло-гическому обследованию. Для объективизации динамики восстановления применяли также Скандинавскую шкалу инсульта (СШИ). С помощью анкетных методов подробно уточняли сомнологический анамнез, субъективную оценку сна, уровень депрессии (опросник Бэк), личностной и реактивной тревоги (шкала Спилбергера). Полисомнографическое обследование до и после 10-дневного приема препарата проводилось с помощью компьютерного комплекса «Sleep Surfing» c регистрацией ЭЭГ, ЭОГ, ЭМГ. Анализ структуры сна проводился с помощью программы Центра сомнологических исследований, где кроме стандартных параметров изучается сегментарная структура сна.
Мозговой инсульт, как правило, приводит к грубым расстройствам ночного сна. Эти расстройства проявляются как изменениями его структуры, так и циркадных характеристик. Если в первом случае имеют место качественные изменения, проявляющиеся серьезными нарушениями механизмов генерации и поддержания сна, то во втором - либо сон становится полифазным, либо происходит его инверсия (смещение цикла «бодрствование-сон»). Действительно, у всех больных регистрировались расстройства сна различной степени выраженности. Исследования показали, что в результате приема мелатонина у больных отмечались: достоверное уменьшение длительности засыпания (с 35 минут до 21 минуты), представленности первой стадии - дремоты (с 12% до 8%), количества сегментов (с 89 до 66), увеличение времени второй стадии - (с 32% до 44%). Индекс качества сна (интегративный показатель, чем он ниже, тем лучше структура сна) снижался с 29 до 24. Однако на фоне улучшения этих показателей сна имело место некоторое снижение длительности парадоксального сна (с 17% до 13%), при этом длительность глубокого медленного сна («дельта-сна») изменялась незначительно (с 18% до 20%). Особенностью мелатонина являлось также то, что при инверсии сна (3 испытуемых) он восстанавливал нарушенный биоритм «сон-бодрст-во-вание». Отмечалось также достоверное снижение уровня депрессии. Личностная и реактивная тревожность оставались без динамики. В неврологической картине динамики не наблюдалось, что по видимому, связано с недостаточностью этого срока для выявления положительных сдвигов. Сделан вывод, что Мелаксен оказывает положительное влияние на качество сна при его нарушениях, вызванных мозговым инсультом.
Но не только улучшение цикла «сон-бодрствование» делает мелатонин интересным для применения у больных инсультом. Целый ряд исследований (как экспериментальных, так и клинических) выявляет важнейшие свойства мелатонина для лечений этих пациентов:
1. мелатонин увеличивает церебральную реперфузию у крыс с экспериментальной артериальной окклюзией;
2. мелатонин уменьшает мозговой отек у крыс с экспериментальным инсультом;
3. мелатонин повышает нейропластичность в условиях стресса, вызванного экспериментальным инсультом;
4. при врожденной гипоплазии эпифиза повышается риск мозгового инсульта и инфаркта миокарда;
5. изменения иммунного статуса при инсульте возможно связано с нарушенной ночной секрецией мелатонина;
6. мелатонин повышает нейропластичность у пожилых.
Эпилепсия. Достаточное количество исследований свидетельствуют о снижении ночной секреторной активности эпифиза у больных эпилепсией; при этом отмечаются более низкие уровни мелатонина у больных с частыми приступами. Таким образом, в результате подобных сдвигов складывающаяся в организме мелатонина недостаточность может быть одной из причин повышенной генерации в мозговой ткани свободных радикалов, которая неизменно сопутствует эпилептическому процессу. Длительное применение противосудорожных препаратов повышает образование свободных радикалов, что ведет к оксидантному стрессу с последующей гибелью нейронов. Повышение концентрации свободных радикалов само по себе ведет к прогрессированию заболевания (дегенерация нейронов в результате ПОЛ и снижения синетза глутатиона в эпилептическом очаге). С учетом вышеописанных антистрессовых и антиоксидантнаыхвозможностей мелатонина, становится понятной необходимость его применения у этих пациентов. Мелатонин необходимо добавлять к базисной противосудорожной терапии и в связи с наличием у него нейропротективных свойств как ингибитора глутаматных рецепторов и активатора ГАМК-рецепторов.
Паркинсонизм. При болезни Паркинсона ночная секреция мелатонина значительно снижается. У больных паркинсонизмом применяли мелатонин в рамках комплексной терапии. Выявлено улучшение ночного сна, повышение уровня дневного бодрствования и снижение уровня дневной сонливости, а также некоторое повышение двигательных возможностей и снижение уровня депрессии. Мелатонин также использовали при лечении психозов, вызванных дофаминомиметиками. Вместе с тем эти исследования должны быть продолжены.
Болезнь Альцгеймера. Показано, что при болезни Альцгеймера ночная секреция мелатонина резко снижается. Ряд исследований позволяет предположить позитивное влияние мелатонина (в рамках комплексной терапии этих пациентов) на хронобиологические расстройства, такие как инверсия цикла «сон-бодрство-вание». Нарушения чувствительности МТ1 типа мелатонинергических рецепторов возможно участвует в снижении секреции таких нейропептидов, как вазопрессин и вазоинтестинальный пептид в ЦНС при болезни Альцгеймера.
С учетом вышеописанного многообразия биологических эффектов мелатонина представляется, что далеко не все его возможности активно используются в современной медицине и его перспективы достаточно радужны.

Всевластный лик, глядящий с вышины!
Настанет ночь - и взор летит из бездны,
И наши сны, взлелеянные сны
Пронизывает знанием надзвездным.

А. А. Чижевский, Космос

Анисимов Владимир Николаевич - руководитель отдела канцерогенеза и онкогеронтологии НИИ онкологии им. проф. Н.Н.Петрова Росздрава, профессор, доктор медицинских наук, президент Геронтологического общества Российской академии наук, член Совета Международной ассоциации геронтологии и гериатрии, эксперт Программы ООН по старению, главный редактор журнала "Успехи геронтологии", автор более 400 научных работ, в том числе 19 монографий, 6 изобретений и патентов.

Основные научные интересы связаны с изучением взаимоотношений процессов старения и возникновения злокачественных новообразований, с экспериментальной разработкой новых подходов к профилактике рака и преждевременного старения.

Содержание

  • Световой режим, мелатонин и регуляция суточных биоритмов
  • Световой режим и рак
    • Действие света ночью и спонтанный канцерогенез у грызунов
    • Воздействие света ночью и канцерогенез, индуцированный химическими агентами
    • Влияние генетического или хирургического нарушения циркадианного ритма на рост опухоли
    • Влияние мелатонина на развитие опухолей у животных и человека
    • Нарушения сна и десинхроноз путешественников
    • Сердечно-сосудистая патология: артериальная гипертензия и ишемическая болезнь сердца
    • Заболевания желудочно-кишечного тракта
    • Профилактика старения
  • Мелатонин: рекомендуемые дозы и безопасность
  • Рекомендуемая литература [показать]
    1. Анисимов В. Н. Физиологические функции эпифиза (геронтологический аспект) // Рос. Физиол.ж. им. И.М.Сеченова. 1997. Т.83, N8. С.1-13.
    2. Анисимов В.Н. Мелатонин и его место в современной медицине // РМЖ, 2006. Т. 14, N4, С.269-273.
    3. Анисимов В.Н., Батурин Д. А., Айламазян Э.К. Эпифиз, свет и рак молочной железы // Вопр. онкол. - 2002.- Т. 48.- С. 524-535.
    4. Анисимов В.Н., Айламазян Э. К., Батурин Д.А., Забежинский М. А., Алимова И.Н., Попович И.Г., Бениашвили Д.Ш., Мэнтон К.Р., Провинциали М., Франчески К. Световой режим, ановуляция и риск злокачественных новообразований женской репродуктивной системы: механизмы связи и профилактика // Ж. акуш. и женских болезней. 2003. Т. 52, N2. С.47-58.
    5. Анисимов В.Н., Виноградова И. А. Световой режим, Мелатонин и риск развития рака // Вопр. онкол., 2006.Т.53, N5. С.491 -498.
    6. Анисимов В.Н., Забежинский М. А., Попович И.Г. Мелатонин угнетает канцерогенез толстой кишки, индуцируемый 1,2-диметилгидразином у крыс: эффекты и возможные механизмы // Вопр. онкол. 2000.1.46, N2. С. 136-148.
    7. Анисимов В.Н., Кветной И.М., Комаров Ф.И., Малиновская Н.К., Рапопорт С.И. Мелатонин в физиологии и патологии желудочно-кишечного тракта. - М.: "Советский спорт", 2000.-1 84 с.
    8. Арушанян Э.Б. Хронофармакология на рубеже веков.- Ставрополь: Изд. СГМА, 2005-576 с.
    9. Арушанян Э.Б. Эпифизарный гормон мелатонин и нарушения познавательной деятельности головного мозга // РМЖ, 2006. Т. 14, N9, с. 673-678.
    10. Арушанян Э.Б. Эпифизарный гормон мелатонин и неврологическая топология // РМЖ, 2006. Т. 14, N23. С. 1657-1663.
    11. Арушанян Э.Б. Гормон эпифиза мелатонин и его лечебные возможности // РМЖ, 2005. Т. 13, N26. С. 1755-1760.
    12. Бениашвили Д.Ш., Биланишвили В.Г., Менабде М.З., Анисимов В.Н. Модифицирующее влияние режима освещения и электромагнитных полей на развитие опухолей молочной железы, индуцируемых N-нитрозометилмочевиной у самок крыс // Вопр. онкол. -1993.- Т.39, N1.- С.52-60.
    13. Заславская Р.М., Шакирова А.Н., Лилица Г.В., Щербань Э.А. Мелатонин в комплексном лечении больных сердечно-сосудистыми заболеваниями.- М.: ИД МЕДПРАКТИКА-М, 2005.-192 с.
    14. Заславская Р.М., Шакирова А.Н. Мелатонин (мелаксен) в лечении артериальной гипертонии // Практикующий врач, N1, 2006. С. 10-1 7.
    15. Инсомния: современные диагностические и лечебные подходы / Под ред. Проф. Левина Я. И.-М.: ИД Медпрактика-М, 2005.- 116с.
    16. Каратеев А.Е., Каратеев Д.Е., Лучихина Е.Л., Насонова В.А. Первый опыт применения мелатонина для коррекции нарушений сна у больных с ревматоидным артритом. // Научно-практическая ревматология, 2004, N4. С. 73-76.
    17. Кветная Т.В., Князькин И.В. Мелатонин: роль и значение в возрастной патологии.-СПб.: ВмедА, 2003.-93 с.
    18. Кветная Т.В., Князькин И.В., Кветной И.М. Мелатонин - нейроиммуноэндокринный маркер возрастной патологии.- СПб.: Изд-во ДЕАН, 2005.-144 с.
    19. Коваленко Р.И. Эпифиз в системе нейроэндокринной регуляции. В кн.: Основы нейроэндокринологии / Под ред. В.Г. Шаляпиной и П.Д. Шабанова. СПб.: Элби-СПб, 2005, с. 337-365
    20. Комаров Ф.И., Рапопорт С.И., Малиновская Н.К., Анисимов В.Н. Мелатонин в норме и патологии. - М.: ИД Медпрактика-М, 2004.-308 с.
    21. Коркушко О.В., Хавинсон В.Х., Шатило В. Б. Пинеальная железа: пути коррекции при старении.- СПб.: Наука. 2006.-204 с.
    22. Лазарев Н.И., Ирд Е.А., Смирнова И.О. Экспериментальные модели эндокринных гинекологических заболеваний. М.: Медицина. 1976.-1 75 с.
    23. Левин Я.И. Мелатонин (Мелаксен ®) в терапии инсомнии // РМЖ, 2005. Т. 13,N7. С. 498-500.
    24. Малиновская Н.К., Комаров Ф.И., Рапопорт С.И., Райхлин Н.Т. и др. Мелатонин в лечении язвенной болезни двенадцатиперстной кишки // Клиническая медицина, 2006, N1. С. 5-11.
    25. Малиновская Н.К., РапопортС. И и др. Новые патогенетические подходы к терапии язвенной болезни двенадцатиперстной кишки // РМЖ. 2005. Т.7, N1. С. 16-22.
    26. Мусина Н.З., Аляутдин Р. Н., Романов Б.К., Родионов О.Н. Коррекция биоритмов мелатонином у летного состава // Росс. Мед. Журнал, 2005, N6. С. 37-39.
    27. Райхлин Н.Т., КомаровФ. И., Рапопорт С.И., Малиновская Н.К. и др. Синдром разраженной кишки. Клинико-морфологические аспекты при лечении Мелаксеном ® // РМЖ, 2006. Т. 8, N2. С. 97-102.
    28. Ром-Бугославская Е.С, Бондаренко Л.А, Сомова Е.В., Комарова И.В. Роль пинеальной железы в развитии атеросклероза. Влияние круглосуточного освещения на некоторые стороны патогенеза атеросклероза // Пробл. старения и долголетия. 1993; N2: 91-97.
    29. Чазов Е.И., Исаченков В. А. Эпифиз: место и роль в системе нейроэндокринной регуляции. М.: Медицина. 1 974.-238 с.
    30. Яхно Н.Н. Отчет о клинической эффективности препарата Мелаксен ® фирмы Юнифарм-США при лечении инсомний/лечащий врач, 1999, N1

Перспективы применения мелатонина в клинической практике

В настоящее время во многих странах выпускаются препараты мелатонина, которые зарегистрированы или в качестве лекарств, или как БАД (биологически активные добавки). В мировой медицинской практике уже накоплен некоторый опыт применения мелатонина при лечении различных заболеваний. На территории РФ зарегистрирован только один лекарственный препарат мелатонина - Мелаксен ® ("Unipharm, Inc.", США), проведены многочисленные клинические исследования, подтверждающие его эффективность в различных областях медицины.

Нарушения сна и десинхроноз путешественников

На сегодняшний день получены определенные доказательства влияния мелатонина на улучшение адаптации при смене часовых поясов (уровень А) и нормализацию сна при инсомнических нарушениях у людей различных возрастных групп (уровень В).

В отношении трансмеридианных перелетов, когда резкая смена часовых поясов сопровождается развитием десинхроноза, в отношении профилактического приема мелатонина с целью устранения десинхроноза разработан ряд конкретных рекомендаций.

Таблица 7. Динамика показателей гериатрической шкалы Сандоз у 30 больных с нарушениями сна на фоне лечения препаратом Мелаксен в дозе 3-4,5 мг/сутки в течение 4-х недель

Симптомы

До лечения

После лечения

Ясность сознания

Память на текущие события

Беспокойство

Эмоциональная лабильность

Депрессия

Усталость

Головокружение

Головная боль

Контактность

Социальная активность

Снотворным действие мелатонина можно назвать только условно: он обеспечивает мягкий седативный эффект, способствует общему расслаблению, снижению реактивности в ответ на внешние раздражители, что приводит к плавному засыпанию. Образно говоря, мелатонин открывает "ворота сна" (В.М. Ковальзон, А.М. Вейн, 2004). Седативно-снотворная активность мелатонина сравнима с эффектом бензодиазепиновых препаратов, однако рациональная доза мелатонина на 2 порядка ниже, и он свободен от многочисленных побочных эффектов традиционных синтетических снотворных и успокаивающих средств.

Эффективность, безопасность и хорошая переносимость препарата Мелаксен ® у больных с нарушениями сна были продемонстрированы в ряде исследований на базе ведущих российских неврологических клиник, в том числе, Центра сомнологических исследований (Вейн А. М., Левин Я. И., 1997) и кафедры нервных болезней ММА им. И. М. Сеченова, (Яхно Н.Н., 1997). Суммарно в результате исследований было установлено, что у больных инсомнией прием препарата Мелаксен ® в дозировке 3-4,5 мг однократно на ночь улучшает ночной сон - ускоряет засыпание, снижает число ночных пробуждений, улучшает самочувствие после утреннего пробуждения. Кроме того, эти исследования показали, что помимо нормализующего влияния на сон, Мелаксен ® оказывает положительное действие на интеллектуально-мнестические функции и эмоционально-личностную сферу (таблица 7).

Улучшение в эмоционально-личностной сфере и со стороны интеллектуально-мнестческих функций у больных инсомнией на фоне терапии мелаксеном выражалось в снижении эмоциональной лабильности и тревожности, улучшении настроения, повышении ясности сознания, улучшения памяти на текущие события, уменьшении чувства усталости, повышении социальной активности и контактности. Исследования, проведенные в Федеральном Центре сомнологических исследований, также показали эффективность терапии Мелаксеном ® у больных с острым нарушением мозгового кровообращения. Было пролечено 15 больных в острейшем периоде инсульта (из них 12 с ишемическим инсультом) и инсомнией с инверсией цикла сна (с бодрствованием в ночное время и сонливостью в дневное). Пациенты на фоне базовой терапии получали Мелаксен ® по 3 мг за 30 минут до сна на ночь в течение 14 дней. В результате исследования было установлено, что на фоне терапии Мелаксеном ® по данным анкет улучшается качество сна, увеличивается суммарная балльная оценка ночного сна и исчезает дневная сонливость, по данным полисомнографии увеличивается длительность сна, сокращается время засыпания, уменьшается количество пробуждений из сна. Кроме того, исследование показало, что Мелаксен ® хорошо сочетается с другими лекарственными препаратами. Исследователи делают вывод, что Мелаксен ® является препаратом выбора для лечений нарушений сна у больных с нарушением мозгового кровообращения.

Сердечно-сосудистая патология: артериальная гипертензия и ишемическая болезнь сердца

Специфические рецепторы к мелатонину есть в гладкомышечных клетках и эндотелии кровеносных сосудов. Мелатонин ингибирует агрегацию тромбоцитов, обеспечивает кардиопротекторный эффект при реперфузии (восстановление кровообращения в коронарных сосудах после операций на "сухом" сердце).

В настоящее время бесспорным является нарушение временной организации гемодинамики, проявляющееся феноменом внутреннего и внешнего десинхроноза циркадианных и циркасептанных ритмов показателей гемодинамики, у больных артериальной гипертонией (АГ). При применении препаратов мелатонина больными эссенциальной гипертонией отмечается эффект снижения уровня диастолического артериального давления в среднем на 30 мм рт. ст. Подобный эффект, но выраженный гораздо меньше, наблюдается и у здоровых добровольцев. Очевидно, что фармакологическое действие мелатонина напрямую зависит от исходного тонуса сосудов.

Рассматривается ряд гипотез по механизму гипотензивного действия мелатонина. Мелатонин, благодаря синхронизирующим свойствам, способен ликвидировать рассогласование циркадианных ритмов. Во-вторых, у ряда больных АГ имеет место гиперреактивность гипофиз-адреналовой системы, функцию которой ограничивает мелатонин. Кроме того, мелатонин активирует дофаминэргические и ГАМК - эргические механизмы, возможно ослабленные при АГ. В-третьих, в развитии АГ играет роль снижение продукции ПГЕ2 и других депрессоров. А мелатонин обладает свойством стимулировать синтез ПГЕ2, простациклина. И, наконец, мелатонин контролирует активность Са 2+ каналов, нарушение деятельности которых считается одним из ключевых моментов патогенеза АГ.

Немногочисленные клинические исследования были посвящены изучению уровня мелатонина у больных ИБС. Эти исследования свидетельствуют: у больных со стенокардией ночная продукция мелатонина значительно снижена. Причем, чем тяжелее форма ИБС, тем ниже уровень мелатонина. Особенно низок уровень мелатонина у больных с высоким риском возникновения инфаркта миокарда и летального исхода. Giroffi L. с соавт. (2000) изучали уровень мелатонина в моче у больных ишемической болезнью сердца в сравнении со здоровыми лицами. Результаты исследования показали, что больные с ИБС имеют низкую продукцию мелатонина, по сравнению со здоровыми лицами. Кроме этого, уровень мелатонина был ниже в группе с нестабильной стенокардией, т.е. чем выше риск возникновения инфаркта миокарда, тем ниже уровень мелатонина в моче. Другие исследования также свидетельствуют о снижении уровня мелатонина до низких цифр при состоянии, близком к развитию инфаркта миокарда. Авторы определяли уровень мелатонина в моче в ночное время у больных с ангиографически подтверждённой коронарной болезнью, а также исследовали эффект бета-адреноблокаторов (БАБ) на уровень мелатонина. При этом учитывали, что большинство пациентов получают БАБ и имеются работы, указывающие на снижение уровня мелатонина под влиянием БАБ. Закотник и соавт., (1999) показали, что продукция мелатонина у больных ИБС уменьшается, однако, как утверждают эти исследователи, снижение мелатонина может быть предрасполагающим фактором для возникновения ИБС, или ИБС сама по себе способствует уменьшению синтеза мелатонина. Вместе с тем, этот вопрос остаётся дискутабельным.

Мелаксен ® в лечении артериальной гипертензии .

Российскими исследователями З.М.Заславской и соавт. в течение ряда лет проводились исследования, посвященные изучению эффективности мелатонина в виде монотерапии и в комплексном лечении мелатонином с антигипертензивными и антиангинальными препаратами у больных артериальной гипертонией и ишемической болезнью сердца.

У обследуемых лиц с артериальной гипертонией отсутствовала суточная ритмичность ряда исследованных параметров гемодинамики (ДАД, ЧСС, ДП), обращал на себя внимание сдвиг средних акрофаз САД и АД ср. на ночные часы. Эти данные указывали на нарушение временной организации кровообращения с явлениями внутреннего и внешнего десинхроноза у обследуемых лиц. Мелаксен ® в дозе 3 мг назначали данным пациентам однократно в сутки в 22.00. До и после 10-дневного курса терапии мелатонином изучали суточный профиль артериального давления (АД), числа сердечных сокращений (ЧСС), двойного произведения (ДП), параметры центральной гемодинамики. В результате исследования было установлено, что среднесуточный уровень систолического артериального давления (САД) под влиянием лечения снизился от 161.4±7.9 до 1 35.02±5.9 мм рт.ст., диастолического артериального давления (ДАД) снизился с 90.1±6.6 до 76.1±5.5 мм рт.ст. (р<0,05). Среднее артериальное давление (АД ср.) снизилось со 112.6±6.9 до 95.7±4.4 мм рт.ст. (р<0.05). ЧСС уменьшилось с 71.5±3.3 до 63.4±4.7 ударов в 1 минуту (р<0.05). Общее периферическое сопротивление сосудов статистически достоверно снизилось с 1845.5±196.5 до 1477.9±111.2 дин/сек/см-5 (р<0.05). Удельное периферическое сопротивление сосудов (УПСС) имело тенденцию к снижению. Работа сердца (А) уменьшилась с 0.12±0.003 до 0.105±0.004 Дж (р<0.05). Двойное произведение (ДП) снизилось со 132.5±9.96 до 88.4±7.96 усл.ед. (р<0.05).

Приведенные данные свидетельствуют о гипотензивном эффекте мелатонина, обеспечиваемым снижением общего периферического сопротивления (ОПС). Следует также отметить отрицательный хронотропный эффект и существенное уменьшение энергетических затрат миокарда, о чем свидетельствует снижение работы сердца и двойного призведения. Стойкий гипотензивный эффект наступал в среднем на 5 сутки (5.7±0.3). Кроме того, в исследовании было установлено, что Мелаксен в дозе 3 мг нормализует нарушенную до этого циркадную гемодинамику. Так, отсутствующие до воздействия мелатонином ритмы, под влиянием лечения - появляются (ДАД, ЧСС, ДП), а признаки внутреннего и внешнего десинхроноза ликвидируются, восстанавливается синхронизация циркадианных ритмов гемодинамики. Аналогичные результаты были получены и при использовании более высоких дозировок Мелаксен ® у больных АГ (Мелаксен 6мг однократно на ночь в течение 10 дней). Этими же исследователями было выявлено усиление эффективности терапии АГ у пожилых больных в случае сочетания стандартных гипотензивных средств (каптоприла, эналаприла, моксинидина, лозартана) с Мелаксеном ® (3-6 мг/сут) по сравнению с монотерапией стандартными гипотен-зивными средствами.

Таким образом, включение мелатонина в схемы лечения АГ у больных пожилого возраста позволяет не только усилить эффективность терапии стандартными антигипертензивными средствами, но и нормализовать нарушенную циркадную гемодинамику. Кроме того, данная терапия позволяет эффективно устранить нарушения сна, нередко присутствующих у пациентов с АГ, особенно в пожилом возрасте.

Мелаксен ® в комплексном лечении ишемической болезни сердца (ИБС) .

Известно, что большую роль в нарушении метаболизма миокарда играют, не только внутрисердечная гемодинамика, но и активизация перекисного окисления липидов (ПОЛ), а также истощение, а затем и угнетение антиоксидантной защиты (АОЗ) и, как следствие этого - нарушение баланса в системе оксиданты/антиоксиданты с развитием окислительного стресса. Мелатонин является сильным и довольно эффективным инактиватором свободных радикалов. Он взаимодействует с высокотоксичными гидроксильными радикалами, защищая клетки от гидроксильного повреждения. Подобно индольным производным триптофана, мелатонин в качестве донора и акцептора электронов вовлекается в их перенос и за счет детоксикации свободных радикалов ограничивает интенсивность пероксидазных процессов.

Ряд авторов, в экспериментальных исследованиях на изолированных сердцах крыс, показали, что мелатонин приводит к уменьшению количества свободных радикалов, защищая миокард в период постишемической реперфузии, уменьшает размеры инфаркта миокарда и сокращает длительность желудочковой тахикардии, а также обладает почти нейтральным эффектом в отношении параметров гемодинамики и коронарного кровотока.

Кроме этого, мелатонин влияет на ПОЛ и активность антиоксидантных (АО) ферментов, уменьшая уровень малонового диальдегида и повышая активность Сu, Zn-супероксиддисмутазы и содержание глутатиона.

В рамках исследования влияния мелатонина на течение ИБС и ее осложнения Р.М.Заславской и соавт. изучена группа больных пожилого возраста с ИБС, стабильной стенокардией II-III ФК (СС), перенесших инфаркт миокарда и страдающих сердечной недостаточностью (СН) II-III ФК по классификации МУНА. Все больные этой группы получали стандартную терапию в сочетании с Мелаксеном ® . В результате проведенного исследования было установлено, что Мелаксен ® в суточных дозах 3 и 6 мг на фоне стандартного лечения (нитраты, β-адреноблокаторы, ингибиторы АПФ, антиагреганты и мочегонные препараты) у пожилых больных ИБС, стабильной стенокардией II-III ФК, перенесших инфаркт миокарда и страдающих сердечной недостаточностью II-III ФК, оказывает выраженный антиангинальный и антиишемический эффекты, значительно улучшая клиническую симптоматику, уменьшает количество эпизодов депрессии и элевации сегмента SТ почти до полного их исчезновения.

Более высокая доза Мелаксена - 6 мг существенно улучшает систолическую функцию левого желудочка, что не происходит при приеме Мелаксена ® в дозе 3 мг. Кроме этого, влияние Мелаксена ® в дозах 3 мг и 6 мг на ПОЛ проявляется достоверным снижением уровня МДА.

Авторы делают заключение, что, принимая во внимание широкий спектр биологической активности мелатонина, включающий его антиоксидантное, проантиоксидантное, антистрессорное воздействия, а также нормализующее влияние на хроноструктуру параметров гемодинамики и вазодилатирующий эффект, включение в комплексную терапию больных ИБС мелатонина представляется целесообразным.

Заболевания желудочно-кишечного тракта

Присутствие мелатонина обнаружено на всем протяжении желудочно-кишечного тракта, более того, как мы уже упоминали выше, в некоторых клетках происходит синтез этого гормона. Мелатонин оказывает влияние на моторику органов пищеварительной системы, на микроциркуляцию и пролиферацию клеток слизистой оболочки. У больных язвенной болезнью выявлены грубые нарушения суточного ритма продукции мелатонина. И, наверное, не случайно обострение язвенной болезни наблюдается чаще всего в весеннее время года. Этот период характеризуется не только возможным авитаминозом, но и перестройкой светового режима, что неизбежно отражается на деятельности эпифиза.

В рамках научной тематики лаборатории "Хрономедицина и новые технологии в клинике внутренних болезней" ММА им. И.М. Сеченова уже более 10 лет проводится работа по изучению роли мелатонина в патогенезе и клинике внутренних болезней, в том числе, язвенной болезни двенадцатиперстной кишки (ЯБДК) и синдрома раздраженного кишечника (СРК). Исследователями (Малиновская Н.К., Рапопорт С.И., Кветной И.М., Райхлин И.М.) было установлено, что при обострении ЯБДК комбинированная терапия блокаторами протоновой помпы (омепразол) в сочетании с лекарственным препаратом мелатонина (Мелаксен ®) обеспечивает более выраженный клинический эффект по сравнению с монотерапией омепразолом.

Комбинированная терапия достоверно уменьшает степень активности и выраженности антрального гастрита с восстановлением практически до контрольных значений соотношения клеток, продуцирующих гастрин и соматостатин и внутриклеточного содержания этих гормонов, что свидетельствует о достижении более глубокой ремиссии на комбинированной терапии в те же сроки, что и на монотерапии омепразолом. При глубокой ремиссии (практически полном выздоровлении) происходит восстановление суточных ритмов продукции мелатонина.

Обнадеживающие результаты получены этими же исследователями по изучению эффективности экзогенного мелатонина в лечении синдрома раздраженной кишки (СРК). Лечение СРК с применением Мелаксена ® оказалось более эффективным, чем другие схемы терапии, что нашло свое подтверждение при гистологическом и электронно-микроскопическом исследовании слизистой оболочки толстой кишки. Было определено, что базисная терапия + Мелаксен ® более эффективна, чем базисная терапия + психотропные средства и только базисная терапия в плане нормализации стула и улучшения сна у больных СРК.

Базисная терапия + Мелаксен ® сопоставима по эффективности с базисной терапией + психотропные средства при купировании болевого и диспептического синдромов у больных СРК, нормализации их психического статуса, улучшении качества жизни.

Профилактика старения

Если эпифиз - солнечные часы организма, то, очевидно, любые изменения длительности светового дня должны существенным образом сказываться на его функциях и, в конечном счете, на скорости старения. В ряде работ было показано, что нарушение фотопериодичности может приводить к существенному уменьшению продолжительности жизни.

Американские исследователи М. Хард и М. Ральф обнаружили, что золотистые хомячки с особой мутацией в гене, отвечающем за генерацию ритмических сигналов в супрахиазматическом ядре гипоталамуса (а именно этими сигналами задается ритм продукции мелатонина), имели на 20% меньшую продолжительности жизни, чем контрольные. Когда же в головной мозг старых мутантных хомячков имплантировали клетки гипоталамуса плодов здоровых хомячков, было отмечено восстановление нормальной продолжительности жизни (рис.7).

Разрушение супрахиазматических ядер приводит к сокращению продолжительности жизни животных. В этих ядрах проявляет свою активность целый набор уже упоминавшихся генов, называемых "часовыми" генами или гена- ми циркадианого ритма. Нарушение функции одного из циркадианых генов, Реr2, вызывает преждевременное старение и увеличивает чувствительность мышей к развитию опухолей. Мутации в другом гене циркадианого ритма, Сlock, у мышей приводит к развитию ожирения и метаболического синдрома, а также к преждевременным нарушениям овуляторного цикла и снижению плодовитости.

В многочисленных исследованиях показана способность мелатонина замедлять процессы старения и увеличивать продолжительность жизни лабораторных животных - дрозофил, плоских червей, мышей, крыс.

Определенный оптимизм вызывают публикации о способности мелатонина повышать устойчивость к окислительному стрессу и ослаблять проявления некоторых ассоциированных с возрастом заболеваний людей, таких как макулодистрофия сетчатки, болезнь Паркинсона, болезнь Альцгеймера, сахарный диабет.

Необходимы дальнейшие всесторонние клинические испытания мелатонина, которые, как нам представляется, существенно расширят его применение для лечения и профилактики возрастных заболеваний и, в конечном счете, преждевременного старения.

Физиологические дозы мелатонина составляют 0,1-0,5 мг. Их прием в вечернее время обеспечивает повышение уровня гормона в крови нормального физиологического уровня.

Принятые на сегодня терапевтические дозы мелатонина в составе лекарственных препаратов и БАД составляют 3-5 мг. При применении внутрь пик концентрации гормона наблюдается через час, и достаточно высокий уровень в плазме крови сохраняется на протяжении 3-7 часов. Большинство клинических исследований проведено с использованием этих дозировок.

Таблица 6. Группы риска при приеме мелатонина

Мелатонин может стимулировать развитие опухолей

Многочисленные исследования подтвердили отсутствие токсического действия у мелатонина. Однако это не служит гарантией от побочных последствий его длительного применения в больших дозах (3-5 и более мг). В связи с этим такие суточные дозы препарата следует принимать курсами длительностью не более 3-4-х недель.

Кроме возможного нарушения суточного ритма при приеме препарата во внеурочное время, в этом случае могут возникнуть и серьезные эндокринные нарушения.

Не следует забывать, что избыточная продукция мелатонина вызывает гипогонадизм у мужчин и аменорею у женщин. Особенно чувствительны к действию мелатонина дети.

Необходимо помнить и о возможном взаимодействии мелатонина с другими лекарствами, имеющими общие с ним метаболические пути. Инактивация мелатонина происходит в печени с участием микросомальных оксидаз и цитохрома Р450. Любое лекарственное средство, подавляющее или активизирующее эту систему, будет оказывать влияние на уровень циркулирующего мелатонина, и наоборот.

Как повысить и гармонизировать продукцию собственного мелатонина?
(R.J. Reiter, J. Robinson, 1995)

  • Каждый день выкраивать время для того, чтобы побыть на солнце (на свету). Если это невозможно - создать оптимальный режим искусственного дневного света.
  • Не засиживаться за компьютером или телевизором за полночь. Длительность ночного сна должна быть достаточной для того, чтобы утром ощущать себя бодрым и отдохнувшим. Многим для этого требуется более чем 8 часов.
  • Не включать ночью свет в спальне, на окна повесить плотные шторы, не пропускающие свет с улицы. В крайнем случай, можно надевать на глаза повязку из ткани, не пропускающей свет.
  • По возможности отказаться от ночной работы и длительных трансмеридианных перелетов.
  • Бросить курить, ограничить потребление алкоголя.
  • По возможности исключить прием лекарств, снижающих уровень мелатонина.
  • Включить в рацион продукты, богатые антиоксидантами, кальцием, магнием, никотиновой кислотой и пиридоксином или принимать витаминно-минеральные комплексы.
  • Съесть на ночь банан, кусочек индейки, цыпленка, мягкий сыр, пригоршню тыквенных семечек, миндальных орехов. Все эти продукты богаты триптофаном (предшественник мелатонина).
  • Каждый день выделять время для медитации, аутотренинга или прогулки.

Полноценный сон обеспечивает восстановление организма человека, укрепляет его здоровье, повышает работоспособность. Все процессы жизнедеятельности подчиняются биоритмам. Сон и бодрствование – проявление циркадных (суточных) всплесков и спадов физиологической активности организма.

Крепкий ночной сон обеспечивает гормон мелатонин, который еще называют гормоном молодости и долголетия. Если у человека нет проблем с засыпанием, он спит в достаточном количестве, у организма гораздо больше шансов качественно производить сложные биохимические, синтетические реакции, направленные на полноценное восстановление всех структур.

Общие сведения

Мелатонин - основной гормон эпифиза , регулятор суточных ритмов. Гормон сна известен миру с 1958 года , его открытие принадлежит американскому профессору, Аарону Лернеру.

Молекулы мелатонина небольшие и хорошо растворяются в липидах, что дает им возможность легко проникать через клеточные мембраны и оказывать влияние на многие реакции, например, синтез белков. У новорожденных мелатонин начинает вырабатываться только в три месяца. До этого они получают его с молоком матери. В первые годы жизни ребенка концентрация гормона максимальная и с годами начинает постепенно уменьшаться.

Днем активность проявляет гормон счастья, а с приходом темного времени суток его сменяет гормон сна. Между мелатонином и серотонином существует биохимическая связь . Приблизительно с 23 часов до 5 часов самая высокая концентрация гормона в организме.

Функции мелатонина

Функции гормона не ограничиваются только управлением процессов сна и бодрствования . Его деятельность проявляется в обеспечении других важных функций, он оказывает на организм лечебное действие:

  • обеспечивает цикличность суточных ритмов;
  • помогает противостоять стрессам;
  • замедляет процессы старения;
  • является мощным антиоксидантом;
  • усиливает иммунную защиту;
  • регулирует показатели артериального давления и благотворно влияет на кровообращения;
  • контролирует работу органов пищеварения;
  • нейроны, в которых находится мелатонин, живут значительно дольше и обеспечивают полноценную деятельность нервной системы;
  • противостоит развитию злокачественных новообразований (исследования В. Н. Анисимова);
  • влияет на процессы жирового и углеводного обмена, поддерживает массу тела в пределах нормы;
  • оказывает влияние на синтез других гормонов;
  • снижает болевые ощущения при головной и зубной боли.

Такие действия оказывает эндогенный мелатонин (гормон, который вырабатывается в организме). Фармакологи, используя знания о лечебном действии гормона сна, создали препараты с содержанием искусственно синтезированного (экзогенного) мелатонина. Их назначают при лечении бессонницы, хронической усталости, мигрени, остеопороза.

Используются такие лекарственные средства слепыми людьми для нормализации сна. Их назначают детям с серьезными отклонениями в развитии (аутизм, церебральный паралич, умственная отсталость). Применяется мелатонин в комплексной терапии для тех, кто решил бросить курить (снижается тяга к никотину). Назначают гормон для уменьшения побочных эффектов после химиотерапии.

Как и когда вырабатывается гормон

С наступлением темного времени суток начинается выработка мелатонина , уже к 21 часам наблюдается его рост. Это сложная биохимическая реакция, которая происходит в эпифизе (шишковидной железы). Днем из аминокислоты триптофана активно образуется гормон . А ночью под действием особых ферментов, гормон радости превращается в гормон сна. Так, на биохимическом уровне связаны серотонин и мелатонин.

Эти два гормона необходимы для обеспечения жизнедеятельности организма. Вырабатывается мелатонин ночью, приблизительно с 23 до 5 часов синтезируется 70% от суточного количества гормона.

Чтобы не нарушать секрецию мелатонина и сон, отход ко сну рекомендуется не позднее 22 часов . В период после 0 и до 4 часов нужно спать в темном помещении. Если создать абсолютную темноту невозможно, рекомендуют пользоваться специальной маской для глаз, плотно закрывать шторы. При необходимости бодрствовать во время активного синтеза вещества, лучше создать в помещении тусклое освещение.

Мелатонин вырабатывается в темноте. Пагубное влияние освещения на выработку гормона.

Существуют продукты, которые катализируют выработку гормона. Рацион должен содержать продукты, богатые витаминами (особенно группы В), кальцием. Важно сбалансировать употребление сложных углеводов и белков.

Как действует на организм

Нормальная концентрация мелатонина обеспечивает легкое засыпание и полноценный глубокий сон. В зимнее время, в пасмурную погоду, когда количество света недостаточное, гормон оказывает на организм угнетающее действие. Наблюдается вялость, сонливость.

В Европе Фондом продления жизни проводятся клинические испытания с применением мелатонина при лечении рака. Фонд утверждает, что раковые клетки продуцируют химические вещества, состав которых подобен гормонам эпифиза. Если воздействовать на них сочетанием из гормонов щитовидной железы и мелатонина, организм начинает активно вырабатывать клетки для иммунной защиты .

Для лечения депрессий, в качестве профилактики многих психических расстройств достаточно спать или принимать препараты, которые содержат мелатонин. Немаловажно при этом в дневное время бывать на солнце.

Эксперименты на мышах

Мыши одного возраста, которым был введен ген рака, были разделены на 2 группы.

Одну часть животных содержали в естественных условиях, группа имела дневное освещение и темноту ночью.

Вторую группу освещали круглые сутки. Спустя время, у подопытных мышей со второй группы стали развиваться злокачественные опухоли. Были проведены исследования разных показателей и было выявлено у них:

  • ускоренное старение;
  • избыток инсулина;
  • атеросклероз;
  • ожирение;
  • высокая частота опухолей.

Недостаток и избыток мелатонина

Последствия длительного недостатка мелатонина:

  • в 17 лет проявляются первичные признаки старения;
  • в 5 раз увеличивается количество свободных радикалов;
  • в течение полугода прибавка в весе составляет от 5 до 10 кг;
  • в 30 лет у женщин наступает климакс;
  • на 80% увеличивается риск возникновения рака молочной железы.

Причины нехватки гормона сна:

  • хроническая усталость;
  • ночная работа;
  • отечность под глазами;
  • расстройства сна;
  • тревожность и раздражительность;
  • психосоматические патологии;
  • сосудистые заболевания;
  • язва желудка;
  • дерматозы;
  • шизофрения;
  • алкоголизм.

Симптомами проявляющегося избытка гормона являются:

  • усиление сердцебиения;
  • отсутствие аппетита;
  • повышение артериального давления;
  • замедленные реакции;
  • сокращение лицевых мускулов, подергивания плечами и головой.

Избыток мелатонина вызывает сезонные состояния депрессии.

Анализы и норма мелатонина

Суточная норма гормона сна у взрослого человека 30 мкг. Его концентрация к часу ночи в 30 раз выше, чем днем. Для того чтобы обеспечить это количество, необходим восьмичасовой сон. На утро нормальная концентрация гормона – 4-20 пг/мл, ночью – до 150 пг/мл.

Количество мелатонина в организме зависит от возраста:

  • до 20 лет наблюдается высокий уровень;
  • до 40 лет – средний;
  • после 50 – низкий, у пожилых людей снижается до 20% и ниже.

У долгожителей мелатонин не падает

Как правило анализ делают только крупные медицинские учреждения, так как он не входит в число распространенных лабораторных исследований.

Заборы биоматериала делаются через короткие промежутки времени с фиксацией времени суток. Сдача анализа требует специальной подготовки:

  • за 10-12 часов нельзя употреблять лекарства, алкоголь, чай, кофе;
  • кровь лучше сдавать на тощий желудок;
  • для женщин важен день менструального цикла, поэтому предварительно стоит проконсультироваться с гинекологом;
  • сдать кровь следует до 11 часов;
  • не желательно перед анализом подвергать организм другим медицинским манипуляциям и процедурам.

Гормон сна мелатонин не накапливаться. Выспаться про запас или компенсировать недостаток сна невозможно. Нарушение природных суточных биоритмов приводит к срыву синтеза вещества, а это вызывает не только бессонницу, но и подвергает развитию заболеваний.

Отсутствие солнечного света запускает естественную выработку мелатонина в организме для сна, нарушая этот процесс, сбиваются важные биологические часы человека.

Оригинал взят у в

Если вы уже прочитали главы 1 и 2 «Патофизиологического исследования…», то вполне можете представить себе, каким образом всё живое взаимосвязано в едином пульсирующем паттерне организационного взаимодействия. Одним из ярчайших свидетельств существования этого паттерна являются ритмы. Они отражают две главных тенденции Вселенной. Одна из них создаёт Всё буквально из Ничего, другая точно также обращает всё сущее в великое Ничто. Все, абсолютно все, процессы в природе протекают ритмично, путём попеременной смены различных своих состояний. Орбиты планет имеют точки апогея и перигея, день сменяет ночь, приливы и отливы неотступно следуют Луне, так же как и периодические кровотечения у женщин. Не говоря уже о микромире, где все явления можно представить в виде колебательных процессов различного характера.

В процессе эволюции природные объекты значительно усложнились. Но, несмотря на огромную их сложность, они подчинены простому закону иерархического устройства. И одним из следствий этого закона является то, что в комплексном объекте ритмы всех более простых сущностей, из которых он создан, гармонически согласованы между собой.

Самой простой аналогией подобного рода является часовой механизм. Посмотрите на его внутреннюю красоту: каждая шестерёнка стоит на своём месте, имеет нужное количество зубьев, и стыкуется с другими в точно предназначенном ей месте. Стоит отпустить заведённую пружину, и шестерёнки закрутятся в строгом порядке. Ни одна из них не может сделать это раньше другой, иначе часы или покажут неправильное время, или их просто заклинит. Или же представьте себе сложный танец, в котором каждый из танцоров должен в определённую секунду произвести своё движение. Работу конвейера. Музыкальную симфонию. Примеров множество.

Становится понятным, почему каждое действие должно происходить вовремя. Особенно если оно совершается внутри сложнейшего биологического объекта - такого как наш организм. Все действия в нём детерминированы и управляемы. Точно также организм может управлять и собственными ритмами, поддерживая их постоянство, и приспосабливаясь к изменениям обстановки. Такая вещь, как jet-lag, или синдром смены часового пояса, знакома каждому, кто часто совершает полёты на самолётах. Кто-то не замечает ничего, кто-то испытывает кишечный дискомфорт, другие же не могут сомкнуть глаз или пару суток дрыхнут как сурки. Это организм приспосабливается к новой длительности светового дня.

Ритм, с одной стороны, является следствием работы по сохранению наших базисных констант. Но, с другой стороны, является и константой, происходящей из нашего окружения. Как постоянная величина, наши ритмы зависят от географического, планетарного, и, наверное, космического местоположения, которым определяется режим внешней лучевой нагрузки в данной солнечной системе. Если проще - смены дня и ночи. Поэтому, в процессе эволюции, как жители планеты Земля, мы выработали способ поддержания таковой константы: вещество, обеспечивающее внешнее управление согласованностью биологических ритмов - мелатонин. О нём мы сегодня и поговорим. Из вышесказанного предельно ясна его чрезвычайно важная роль в работе нашего организма.

По биологическому действию мелатонин является гормоном. Его формула - C13H16N2O2

Структурная формула
Он был впервые обнаружен исследовательской группой под руководством американского дерматолога А. Лернера, в 1958 г. Переработав 250 тысяч бычьих пинеальных желез, учёные обнаружили в их экстракте биологически активное вещество, которое осветляло окрас кожи лягушек за счёт стимуляции выброса меланина из меланофоров. Именно из-за этого эффекта вещество было названо мелатонином. Интерес к этому гормону, с момента его открытия, не угасал. Было выполнено множество работ, в которых шишковидная (пинеальная) железа рассматривалась как единственный его источник. Но в более поздних исследованиях значительная широта его эффектов заставила учёных засомневаться в том, что он продуцируется только пинеальной железой. Каково же его действие в организме?

координация биологических ритмов
управление работой половых желёз
иммуномодулирующий эффект
участие в механизмах антиоксидантной защиты
передача нервного импульса (нейротрансмиттерная функция)
защита генетической информации
является одной из сигнальных молекул
антиканцерогенный эффект
седативное действие на ЦНС
геропротективное действие (защита от старения)
Как видите, данный гормон способен влиять как на отдельные органы и клетки, так и на весь организм в целом. Это, вкупе с его химическим строением, приводит нас к мысли о том, что его появление в эволюции живого произошло как минимум на уровне компартмента клетки, если мы примем во внимание то, что он способен предохранять макромолекулы, а также ядерную и митохондриальную ДНК от повреждений во всех субклеточных структурах. Соответственно, можно попытаться обнаружить его и в других клетках организма. Это стало возможным при появлении специфических методов исследования. Одним из первых таких методов стало обнаружение антител к индолалкиламинам (химическое семейство МТ). Т.к. одно из наиболее представленных действий МТ в организме - регуляция «внутренних часов» согласно светового дня, то логичным будет предположить, что в первую очередь гормон будет обнаружен в клетках органов, так или иначе связанных со светом, а именно - в зрительном аппарате. Так оно и получилось. Предшественники мелатонина и связанные с ними каталитические ферменты, были обнаружены в сетчатке глаза. Принципиальная схема его синтеза выглядит так:

(аминокислота) -> 5-ОКСИТРИПТОФАН -> 5-ОКСИТРИПТАМИН (серотонин) -> N-АЦЕТИЛСЕРОТОНИН -> МЕЛАТОНИН

Как уже было сказано выше, мелатонин может вырабатываться и другими клетками нашего организма. При этом мы предположили, что эволюционный возраст данного гормона достаточно велик. Поэтому можно предполагать, что он производится во множестве клеток организма.

Можно представить себе, какое количество сверхсложных процессов способны регулировать, и каждую секунду делают это, все эти клетки. Однако, несмотря на данные об активном участии МТ в процессах адаптации, патофизиологических механизмах, и многих других вещах, значение этого внешнего, по отношению к пинеальной железе, отдела, производящего секрецию МТ, практически не исследовано. (выделение - наше, прим. ред.) А ведь всех этих клеточек совокупно гораздо больше, чем находится в самом шишковидном теле!!!

И, наконец, в данной части статьи хочется осветить некоторые аспекты выработки мелатонина. Интенсивность его метаболизма зависит прежде всего от уровня освещённости. Уровень ГИОМТ, основного фермента, ответственного за выработку, в шишковидной железе ночью в 3,5 раза больше, чем днём. При этом в её клетках пропорционально в 7-9 раз падает уровень серотонина. Это показывает чёткую зависимость синтеза МТ от циркадианного (24-суточного) ритма.

Свет является мощным физико-химическим фактором, ингибирующим (прекращающим) синтез мелатонина. Даже короткий импульс света, полученный в ночное время, подавляет секрецию МТ, причём влияние его зависит от многих составляющих: длины волны, мощности потока, и даже спектра. Эффективнее всего в этом ключе действует белый свет, в сочетании с зелёным, голубым, и красным (эксперименты на крысах).

Пик ночной выработки мелатонина приходится на 2 часа ночи. Также отмечено влияние различных условий на данный процесс:

Питание: после 2х-дневного голодания уровень МТ снижается на 19%, при этом, другая группа голодающих получала глюкозу, уровень МТ не снижался. Есть информация о том, что после 72-дневного голодания дневные уровни МТ возрастают, а ночные остаются неизменными.
Физические упражнения: высокоинтенсивные упражнения, выполняемые ночью, увеличивают секрецию ещё на 50%, но снижают её в 2-3 раза следующей ночью. Упражнения днём увеличивают дневной уровень.
Магнитная обстановка: непрерывное действие полимерных полей (с часто изменяющимися параметрами) увеличивается экскреция 6-СОМТ, основного показателя, по которому меряют уровень мелатонина. При этом у электриков, и людей, работающих с НЧ-магнитными полями уровень МТ достоверно снижается.
А теперь рассмотрим подробнее действие мелатонина на различные процессы в нашем теле.

МТ и онкология

Вопрос раковой болезни - один из самых животрепещущих в нашем обществе. Это касается как профессионалов медицины и биологии, так и простого обывателя. Сегодня практически нет таких людей, которые были бы не знакомы с понятием «рак». Поэтому, люди пристально следят за исследованиями и сообщениями о прогрессе на этом тернистом пути. Исследования МТ, как антионкологического агента, ведутся с 1929 года. Тогда Е. Georgiou предположил, что шишковидная железа может влиять на рост и распространение злокачественных опухолей. К концу 1977 года австрийский онколог V. Lapin организовала и провела симпозиум, посвящённый такому влиянию. Название его было многообещающим: «Пинеальная железа - новый подход к механизму нейроэндокринного воздействия при раке». На нём были систематизированы данные, полученные к этому времени. И с данного момента можно обозначить начало серьёзных углублённых исследований роли мелатонина в неопластических процессах.

Таковая роль была изучена в различных моделях возникновения раковой болезни, с использованием множества экспериментальных методов. Первоначальное мнение Е. Georgiou состояло в том, что шишковидное тело стимулирует рост опухолей. Однако, оно было опровергнуто. Более того, оказалось, что действия, которые активизируют его, или же введение внешнего МТ приводят к снижению числа случаев возникновения и роста опухолей. И, наоборот, удаление железы увеличивает число случаев рака. Сегодня это считается общепризнанным.

Таким образом, мы можем сделать очевидный вывод: шишковидная железа и МТ - один из барьеров нашей противораковой защиты.

Я не буду приводить данные о специфическом действии МТ на различные механизмы роста, специфические рецепторы и сигналы. Их можно прочесть в специальной литературе. Однако, стоит привести краткую справку о его конкретных эффектах:

снижает жизнеспособность клеток опухолей молочной железы (MCF7)
значительно препятствует развитию меланомы
снижение пролиферативной активности раковых клеток вообще
увеличение числа их апоптоза
снижение метастазирования
подавление опухолевого роста путём увеличения клеточной адгезии
МТ и старение

Выработка мелатонина имеет возрастные особенности. Достоверно установлено, что его продукция шишковидной железой устойчиво снижается с увеличением возраста. Эти данные получены как на популяциях животных, так и человека. Принято считать, что это свойственно всем млекопитающим.

Уровень МТ в организме начинает колебаться с момента половой зрелости, как результат работы физиологических механизмов репродуктивного созревания. После достижения зрелого возраста ночные концентрации постепенно снижаются, вплоть до того, что у пожилых людей пинеальная железа перестаёт увеличивать ночной синтез мелатонина вообще. Средний суточный уровень у них ниже, чем у молодых примерно на 50%. Однако не стоит считать, что он неизменно низок. Среди 70-90 летних людей 14% даже имеют его увеличенным относительно своего нормального дневного уровня.

Считается, что такое снижение происходит из-за отложения кальция в шишковидном теле на месте атрофированных его клеток. С возрастом эти отложения увеличиваются в количестве и размерах.

В целом, показатель снижения продукции мелатонина в организме не носит катастрофического характера, уменьшаясь на 20-30% у пожилых, в сравнении с молодыми. Это свидетельствует о том, что экстрапинеальные источники мелатонина (находящиеся вне железы) играют важную роль в формировании общего гормонального статуса и регуляции многих физиологических процессов.

Тяжелейшим дегенеративным процессом в старческих заболеваниях является болезнь Альцгеймера. Она проявляется в прогрессирующей потере памяти, приводящей к слабоумию и смерти. Ею страдают более 20 млн. человек в мире. В последние годы доминирующей считается концепция возникновения болезни Альцгеймера вследствие оксидативного повреждения через β-амилоид, и последующего апоптоза нейронов. Тем более, что нервная система сама по себе очень подвержена оксидативному стрессу: мозг, составляя всего 2% от массы тела, потребляет 20% кислорода.

В этом ключе уделяется много внимания роли мелатонина как агента, способного предотвращать апоптоз и гасить свободные радикалы. Вообще, МТ, как потенциальное средство борьбы с нейродегенеративными заболеваниями, представляет собой интерес по следующим причинам:

Его эндогенная (внутренняя) продукция с возрастом падает, что совпадает с началом многих нейродегенеративных процессов
Он легко проникает через гематоэнцефалический барьер, после экзогенного введения обнаруживается в мозге в высоких концентрациях
Является повсеместно действующим антиоксидантом, активность которого при неврологических заболеваниях очень высока (на модельных исследованиях)
Таким образом мелатонин напрямую участвует в процессах старения, является мощным потенциальным маркером для диагностики и прогноза возрастных заболеваний, в первую очередь онкологических и дегенеративных.

Внешние источники мелатонина
и их роль в обмене веществ

Идентификация молекулы МТ стимулировала интерес исследователей к физиологии шишковидной железы. Очень большая широта действия гормона, и его требуемое расчётное количество поставили под сомнение роль только одного органа в синтезе мелатонина. История открытия экстрапинеального синтеза МТ напрямую связана с концепцией о диффузной нейроэндокринной системе, объединяющей в себе нейроэндокринные клетки, способные синтезировать биогенные амины и пептиды, рассеянные по всему организму. Предположение об этом было сделано давно, но подтверждено только в 1969 г. Исследователем A. Pearse. Было показано, что многие клетки различных типов способны поглощать предшественники моноаминов (5-OH-триптофан, L-2OH-фенилаланин) с последующим их декарбоксилированием и синтезом биогенных аминов. Такие клетки называют APUD-клетками (англ. аббревиатура от «Захват и декарбоксилирование прекурсоров аминов»). В настоящее время найдено более 100 таких клеток.

Эти данные выходят за рамки традиционного подхода к зависимости между нервной и эндокринной системами. С каждым днём появляется всё больше доказательств того, что основы биорегуляции лежат в тесном координированном функциональном взаимодействии между эндокринной и нервной системами, основанном на общем типе получения и переноса информации на всех уровнях. (выделение - наше, прим. ред.)

Мелатонин - одно из веществ, которые участвуют в таком обмене. Его источники рассеяны по всему организму. В роли физиологического сигнала он координирует механизмы гомеостаза и поддерживает его постоянство.

Сначала он был обнаружен в Гардериановой железе и сетчатке глаза. Затем, принимая во внимание данные о высоком содержании предшественников МТ в ЕС-клетках кишечника Н. Т. Райхлин и И. М. Кветной впервые предположили возможность выработки мелатонина этими клетками, и провели экспериментальную его идентификацию. Более того, был подтверждён именно факт наличия процесса синтеза МТ, а не его пассивного накопления. В кишечнике был обнаружен ключевой фермент синтеза мелатонина - ГИОМТ.

Проведённый математический анализ позволяет считать, что общее количество ЕС-клеток в кишечнике значительно больше чем клеток шишковидной железы. Тот факт, что в ЕС-клетках содержится 95% депонированного в организме серотонина - главного предшественника МТ, позволяет рассматривать их в качестве основного источника мелатонина в организме человека и животных.

Вообще, в пределах ДНЭС (диффузной нейроэндокринной системы), выделяют два типа звена МТ-продуцентов: центральное и периферическое. К центральному относятся клетки шишковидной железы и зрительной системы, секреция в которых совпадает с ритмом «свет-темнота». К периферическому - все остальные.

Клетки, производящие МТ, были найдены не только в желудочно-кишечном тракте, но и в других местах. Данные современных исследований дают нам следующую картину его производства вне шишковидной железы:

В эндокринных клетках: ЖКТ, лёгкие, печень, желчный пузырь, почки, надпочечники, щитовидная железа, яичники, эндометрий, плацента, простата, внутреннее ухо;

В неэндокринных клетках: Гардерианова железа, тимус, поджелудочная железа, каротидное тело, мозжечок, сетчатка, тучные клетки, естественные киллеры (NK-клетки), эозинофилы, тромбоциты, клетки эндотелия.

Для тех, кого смущают сложные медико-биологические определения, можно сказать коротко - это практически везде.

Выше уже было сказано, что несмотря на то большинство эффектов, которые производит APUD-генный мелатонин, их механизм остаётся практически неизученным. Однако, имеются некоторые данные. Во-первых, МТ является активным эндогенным антиоксидантом. Его действие является более эффективным чем у такой известной молекулы как глютатион. Особенно большие количества МТ-продуцирующих клеток обнаруживаются в местах, где уровень свободнорадикальных повреждений очень велик, вследствие выработки большого количества собственных эндогенных СР. Например, гипотеза о том, что мелатонин защищает Гардериановы железы от индуцируемого порфиринами (продукт этих желез) свободнорадикального повреждения, подтверждается тем фактом, что у сирийских хомячков содержание МТ в железах строго коррелирует с содержанием порфиринов.

Принимая во внимание большое количество МТ-продуцирующих клеток во многих органах, широкий спектр активности, а также главное свойство - регулировать биологические ритмы, можно считать мелатонин паракринной сигнальной молекулой, локально координирующей клеточные функции и межклеточные связи. Неискушённому читателю данное предложение может показаться слишком сложным, но, тем не менее, в нём заключена вся важность рассматриваемого вопроса. Переводя на бытовой язык, можно привести в пример армию. В ней есть генералы, офицеры, солдаты, повара, водители, лётчики, итд. Мелатонин в этой армии играет роль связиста. Он постоянно, без всякого покоя и отдыха разносит команды от генералов к офицерам, от офицеров к солдатам, и также возвращает рапорты от солдат к офицерам, и от офицеров к генералам. Не говоря уже о распоряжениях для остальных рабочих и служащих. Связь - одна из основ армии. Чем точнее и раньше будет передана команда, тем больше вероятность того. что армия победит в бою. Точно так же и наш организм в его непрестанной битве с окружающей средой. Стоит уровню мелатонина упасть - мы начинаем проигрывать.

Краткий обзор остальных функций

Здесь я дам очень короткий, на уровне утверждений, обзор остальных функций мелатонина в организме человека. Данная информация малоприменима в быту, и представляет собой интерес для специалистов. Но если вы любознательны - милости просим. Возможно, эти данные подтолкнут вас исследовать проблему глубже.

Мнение об угнетающем действии пинеальной железы на репродуктивную функцию высказывалось ещё до открытия мелатонина как гормона. В 1898 г. Heubner описывал 4х-летнего мальчика с опухолью эпифиза и рано развившейся половой зрелостью. Ингибирующая роль МТ достаточно хорошо изучена для животных различных видов. Описаны задержка спонтанного открытия, уменьшение объёма яичника, снижение частоты эстрального цикла самок крыс. Показано ингибирующее действие МТ на выработку тестостерона. В последние годы МТ не рассматривается как строго антигонадотропный агент. Он расценивается скорее как гормональный мессенджер, модулирующий активность различных систем, в т.ч. и репродуктивной, в зависимости от фотопериодического окружения.

Здесь я хочу выдвинуть одну, достаточно интересную, гипотезу. Возвращаясь к теории эволюции Э. Ревичи, можно сказать, что мелатонин обеспечил нам период продлённого детства, чья важность в развитии и становлении нашей культуры просто неоценима. Это видно в том, что при достижении объектом определённого иерархического уровня, на котором возможно обретение способности мыслить, происходит рациональное использование уже имеющейся дополняющей субстанции для того, чтобы закрепить граничную формацию, отделяющую человека от космоса, а именно - техносферу.

Также имеется большое количество работ, свидетельствующих о стимулирующей роли МТ в работе иммунной системы - показано, что он стимулирует выработку цитокинов и интерферона, усиливает цитотоксическую функцию естественных киллеров (NK-клеток).

Помимо гормональных эффектов, МТ, как и другие биогенные амины, обладает нейротрансмиттерным действием. Он обеспечивает возбудимость постсинаптических мембран и участвует в проведении нервного импульса. Эта функция биогенных аминов является важной для деятельности нервной системы - от обеспечения висцеральных эффектов, до интегративных функций, таких как поведение, память, и обучение.

Хорошо известно, что на ранних стадиях эмбриогенеза биогенные амины играют роль специализированных сигнальных молекул, регулирующих процессы клеточного обновления. МТ способен подавлять клеточную пролиферацию, и сила его действия не уступает колхицину, мощному цитотоксическому агенту, использующемуся в терапии рака.

Терапевтические стратегии

В начале данного раздела подведём основные итоги. Итак, что же нам жизненно необходимо знать о мелатонине:

Это важнейший агент, отвечающий за организм как целое. Нарушения в количестве его выработки и временной её привязке - показатель серьёзных проблем.
МТ вырабатывается во время ночного сна в полной темноте.
При типичном старении выработка собственного мелатонина снижается, как минимум, на треть.
Мелатонин вырабатывается в БОЛЬШЕЙ степени кишечником, чем шишковидной железой мозга.
Мелатонин - мощная собственная защита от рака и заболеваний окислительной природы (например, многие артриты и атеросклерозы).
Мелатонин отвечает за общую способность организма приспосабливаться к изменениям.
И сделаем следующие из этих итогов выводы, в порядке важности:

Болезнь, сама по себе, очень редко бывает очень точно локализованным нарушением отдельной передаточной или производящей системы организма. В-основном, такие заболевания носят генетический характер и встречаются крайне редко. Наоборот, болезнь есть явление комплексное, при заболевании происходит выпадение многих звеньев наших взаимоотношений с окружающей средой.

Поэтому нельзя рассматривать любое отдельное вещество как панацею или ведущее лекарство. Нужно восстанавливать в обратном порядке всю цепочку нарушений, что требует во-первых чёткого понимания работы организма, и во-вторых - сонма разнообразных агентов, назначаемых прецизионно. При этом одно и то же заболевание у разных людей может иметь совершенно различную картину внутренних метаболических и сигнальных нарушений, и соответственно, диаметрально противоположные схемы лечения. При исправлении подобных нарушений, и их недопущение организм сам автоматически восстановит уровни МТ, что делает ненужным введение его извне.

Но, в случае, когда подобная терапия невозможна по разным причинам, введение экзогенного мелатонина может значительно помочь. В особенности это показано для раковых больных. Подобная поддержка даёт весь спектр положительных эффектов на общее состояние гомеостаза, позволяя точно локализовать очаги нарушений, и позволить как защитным силам организма, так и вводимым лекарственным веществам работать конкретно с проблемой, вместо того, чтобы преодолевать каскады разрушенных связей. Проще говоря - мелатонин для организма и лекарств подобен дорожной карте. НО СЛЕДУЕТ ПОМНИТЬ: мелатонин может ускорять рост и развитие некоторых опухолей!!!

Возвращаясь к старению, можно смело говорить о том, что каждому, после 50-летнего возраста показан курс МТ 1-2 раза в год. Особенно при наличии симптомов определённых старческих заболеваний. Естественно, с учётом вышеперечисленных указаний.

Также больным и старикам обязательно показана умеренная физическая нагрузка тогда, когда это только возможно и не усугубляет имеющиеся проблемы. Движение - залог поддержания стабильного уровня МТ!!!

Каждый, кто постоянно БЫСТРО перемещается между часовыми поясами и на большие расстояния, просто ОБЯЗАН иметь при себе определённые препараты МТ, для компенсации возникающих десинхронозов. Особенно это касается лётчиков, стюардесс, работающих в условиях электромагнитных полей различной напряжённости.

Из вопроса о мелатонине и кишечнике следует ещё одно подтверждение непреложного эмпирического постулата, проверенного ТЫСЯЧЕЛЕТИЯМИ: наше здоровье - прежде всего здоровье нашего кишечника. В изложенном материале содержится одно из многих теоретических и экспериментальных подтверждений сего. При этом отдельно хочется заметить такой факт - мелатонин вырабатывается из триптофана, аминокислоты. Где больше всего аминокислот? Правильно - в мясе. Особенно доступных - в нежирном мясе, усвоение которого для кишечника гораздо менее энергозатратно, чем, например бобовых, сои, или иной растительной пищи. Смело передавайте вегетарианцам привет от большой науки. Однако, при этом помните, что клетчатка растительной пищи также нужна нам для поддержания оптимальной работы ЖКТ - это пища для населяющих её бактерий.

Говоря о сне, можно сразу чётко определить критерии нормального сна:

отсутствие источников света
комфортное положение тела
перенос сексуальных отношений на дневное время
Также стоит задуматься о минимизации количества электроприборов и наличие в помещениях физиологически грамотного освещения. Выбросьте все эти новомодные лампы дневного света. Они сэкономят вам гораздо меньшие суммы, чем те, которые вы впоследствии затратите на восстановление собственного здоровья. Техносфера усложняется гораздо быстрее, чем наш организм успевает приспособиться. Таким образом увеличение продолжительности жизни, которое было вызвано устранением опасных природных факторов, может быть вскоре нивелировано ранней смертностью по поводу всё возрастающего числа различных системных патологий. Инсульты в 20-25 лет сегодня не редкость.

Самыми оптимальными препаратами мелатонина являются на сегодня спреи, сделанные с использованием технологии липосомальной доставки. Следует знать, что препараты мелатонина СТРОГО ПРОТИВОПОКАЗАНЫ беременным женщинам и лицам в возрасте до 25 лет. В возрасте от 16 до 25 требуются серьёзные показания к применению.

по материалам Хавинсона В.Х.
Коновалова С.С.
et al.

Редакция ресурса «адекватное.ИНФО» предоставляет нижеследующую информацию строго в ознакомительных целях, она ни в коей мере не может служить рекомендацией или указанием в действиях по отношению к собственному здоровью. Рекомендуем пользоваться услугами специалистов для получения полной и достоверной консультации по вопросам любых назначений.

Из имеющихся на рынке препаратов МТ в виде БАД можно выделить следующие:

Source Naturals NUTRA SPRAY Melatonin
Life-FLO Melatonin Cream
Мелатонин в РФ зарегистрирован как ЛС, фармакопейная статья выдана на препарат «Мелаксен». Группа - адаптогены.

Ознакомиться (в т.ч. с ПОКАЗАНИЯМИ, ПРОТИВОПОКАЗАНИЯМИ, и взаимодействием с другими л/с) можно здесь.

Исходя из биологической активности МТ оптимальным для большинства режимом приёма можно считать либо ситуационный, когда НЕ СИСТЕМНО НЕ ПОСТОЯННО принимаются дозы 1,5-2,5 мг по потребности (бессонница, десинхроноз), либо в системе 2 курса в год 2 месяца приём, 3 месяца пропускаем, при наличии соответствующих показаний по 1-1,5 мг.

М.В. НЕСТЕРОВА, д.м.н., профессор, Уральский государственный медицинский университет, Екатеринбург

МЕЛАТОНИН -

АДАПТОГЕН С МУЛЬТИМОДАЛЬНЫМИ ВОЗМОЖНОСТЯМИ

В статье рассматриваются мультимодальные возможности лекарственного препарата мелатонина Мелаксен®, в т. ч. адаптогенное, биоритмогенное, снотворное, геропротективное, иммуностимулирующее, антиоксидантное действие. Определена роль мелатонина в лечении различных заболеваний центральной нервной системы. Приведены результаты собственных исследований организации суточной ритмики мозговой гемодинамики при возникновении хронической ишемии мозга и рекомендованные схемы терапии десинхроноза, лежащего в основе нарушения мозгового кровообращения.

Ключевые слова:

мелатонин биологические ритмы десинхроноз

Мелатонин, гормон эпифиза, регулятор суточных ритмов, был открыт в 1958 г. А.Б. Лернером. С этого времени детально изучены основные этапы биосинтеза мелатонина из триптофана через синтез серотонина (рис. 1), а также временная динамика его образования с высоким уровнем гормона в течение ночи и низким уровнем в течение дня. Максимальный уровень мелатонина в крови наблюдается между 24 ч ночи и 5 ч утра. Вырабатывается мелатонин в нервной системе пинеалоцитами, клетками эпифиза (шишковидной железы), от которого он поступает в гипоталамус и осуществляет ритмическую регуляцию работы внутренних органов, в т. ч. гонад, зависящую от уровня освещенности .

В последующие годы было установлено, что, кроме шишковидной железы, существуют т. н. экстрапинеальные источники синтеза мелатонина, к которым относятся энтерохромаффинные клетки желудочно-кишечного тракта (ЕС-клетки), являющиеся основным депо серотонина (до 95% всего эндогенного серотонина) - предшественника мелатонина . К нейроэндокринным клеткам, синтезирующим мелатонин, также относятся клетки воздухоносных путей, легких, коркового слоя почек, надпочечников, подпеченочной капсулы, параганглиев, яичников, эндометрия, предстательной железы, плаценты, желчного пузыря и внутреннего уха. Кроме того, обнаружен синтез мелатонина и в неэндокринных клетках: тучных, лимфоцитах, тромбоцитах, эозинофиль-ных лейкоцитах, в тимусе, поджелудочной железе, сетчатке глаза, эндотелиальных клетках.

В настоящее время известны мембранные и ядерные рецепторы к мелатонину. Мембранные рецепторы представлены двумя типами: MTNR1A (МТ1), экспресси-рующийся на клетках передней доли гипофиза и супра-хиазмальных ядрах гипоталамуса, а также во многих периферических органах, и MTNR1B (МТ2), экспресси-

рующийся в других участках мозга, в сетчатке и в легких . Эти рецепторы относятся к семейству рецепторов, связанных с G-белками, и действуют через Gai-белок, снижая уровень цАМФ. Недавно открытые ядерные рецепторы мелатонина относятся к подсемейству RZR/ROR-ретиноидных рецепторов, через которые, как предполагают, опосредуются иммуностимулирующие и противоопухолевые эффекты мелатонина.

Мелатонин не накапливается, поэтому важно, чтобы ежедневная его выработка была в достаточном количестве. Для синтеза мелатонина организму необходимо оптимальное количество триптофана, углеводов, витамина В6 и кальция. Выработку мелатонина в кишечнике можно стимулировать. Голодание раз в неделю, занятия спортом способствуют синтезу мелатонина . Факторы, влияющие на уровень эндогенного мелатонина, представлены в таблице 1.

Таблица 1. Факторы, определяющие уровень мелатонина

Темнота ночью, триптофан, никотиновая кислота (вит. В3), пиридоксин (вит В6), кальций, магний, антидепрессанты (ингибиторы моноаминоксидазы), легкая закуска на ночь, медитация, рацион с пониженной калорийностью

Ночной свет, высокие дозы витамина В12, кофеин (кофе,

чай, кока-кола), курение, парацетамол, прозак, дексаметазон, нестероидные противовоспалительные средства (в т. ч. аспирин), бета-адреноблокаторы, блокаторы кальциевых каналов, алкоголь, выпитый около 19 ч

В результате проведенных исследований с момента открытия А.Б. Лернером гормона «ночи», мелатонина, до настоящего времени определены его основные функции на уровне организма: регуляция деятельности нервной, эндокринной, сердечно-сосудистой, иммунной систем, пищеварительного тракта, контроль за периодичностью сна, адаптацией при смене часовых поясов, сезонной ритмикой, замедление процессов старения. На клеточном уровне показаны выраженный антиоксидантный, антимутагенный, антиапоптотический, нейропротекторный, противоишемический эффекты, которые были подтверждены в ряде клинических исследований .

Ьтриптофан

5-гидрокси-триптофан

Физиологическая роль и значение мелатонина в организме огромны. Являясь нейрогормоном, мела-тонин взаимодействует с другими гормонами гипофиза, такими как гонадотропин, кортикотропин, тиро-тропин, соматотропин, тормозя их секрецию. «Вмешательство» мелатонина в их синтез обеспечивает нормальную работу половых желез, надпочечников, щитовидной железы и других органов и систем.

Имеются экспериментальные данные о том, что мелатонин повышает уровень гамма-аминомасляной кислоты, основного тормозящего нейротрансмиттера в ЦНС, а также серотонина в среднем мозге и гипоталамусе, снижение которых имеет значение при развитии тревожных и депрессивных состояний .

Имеются работы, свидетельствующие о выраженном антиокси-дантном эффекте мелатонина, который нейтрализует разрушительные последствия окислительных процессов как на уровне самой клетки, так и в клеточном ядре . Механизм антиоксидантного действия мелатонина заключается в связывании свободных радикалов и активации защитного фактора - глутатион-пероксидазы, тем самым предотвращая повреждения ДНК, клеточных белков и липидов мембран.

Мелатонин относится к геропро-тективным веществам, т. е. средствам против старения. Установлена связь между степенью возрастной инволюции эпифиза и старением тканей организма . Кроме того, известно, что при старении снижается степень иммунологической защиты, а мелатонин, как было показано в научных экспериментах, обладает иммуномодулирующей активностью . Участвуя в регуляции функции тимуса и щитовидной железы, мелатонин повышает активность Т-клеток и фагоцитов, обеспечивая тем самым контроль над канцерогенезом, особенно при онкологическом процессе в молочной и предстательной железах . Обнаружено, что мелатонин подавляет клеточную пролиферацию, усиливая экспрессию молекул адгезии, модулируя иммунный ответ и оказывая прямой цитотоксический эффект на опухолевые клетки .

Но самый мощный и значимый эффект мелатонина -это адаптогенный, антистрессорный, в т. ч. при нарушении цикла «сон - бодрствование», связанный со сменной

Рисунок 1. Синтез мелатонина (цит. по В.Н. Анисимову, И.А. Виноградовой. Старение женской репродуктивной системы и мелатонин, 2008)

триптофан гидроксилаза ЫНг

декарбоксилаза ароматических аминокислот 1>1Н2

серотонин

^ацетил-5-гидрокси-триптамин

работой, частыми перелетами и сменой часовых поясов . Существует гипотеза, что мелато-нин входит в систему защиты организма от неблагоприятных воздействий, и поэтому нарушение его синтеза может быть причиной и маркером патологических изменений. Согласно многочисленным наблюдениям гормон стабилизирует деятельность различных эндокринных систем, дезорганизованных стрессом, в т. ч. устраняет избыточный стрессовый адреналовый гиперкортицизм.

Одним из основных действий мелатонина является регуляция сна. Мелатонин - основной компонент пейсмейкерной системы организма . Он принимает участие в создании циркадного (циркадианного) ритма: мелатонин непосредственно воздействует на клетки и изменяет уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток.

Роль мелатонина в суточной и сезонной ритмичности, режиме «сон - бодрствование» на сегодняшний день не вызывает сомнений . Существует гипотеза, что мелатонин играет роль в открытии «ворот сна», в торможении режимов бодрствования, а не в прямом воздействии на сомногенные структуры головного мозга .

При старении активность эпифиза снижается, поэтому количество мелатонина уменьшается, сон становится поверхностным и беспокойным, возможна бессонница. Мелатонин способствует устранению бессонницы, предотвращает нарушение хода суточных «часов» организма и биоритмов. Бессонница и недосыпание уступают место здоровому и глубокому сну, который снимает усталость и раздражительность. Во время спокойного глубокого сна в организме нормализуется работа всех внутренних органов и систем, расслабляются мышцы, отдыхает нервная система, мозг успевает переработать накопленную за день информацию. С нарушением режима выработки мелатонина связаны расстройства циркадных ритмов и такие состояния, как синдром смены часового пояса (джет-лаг синдром); бессонница, обусловленная сменным графиком работы; бессонница выходного дня; синдром задержки

5-гидроксииндол-О-метилтрансфераза

мелатонин

фазы сна и др. Кроме того, было показано, что в основе ряда соматических заболеваний также лежит нарушение циркадных ритмов и синтеза мелатонина . Прежде всего, речь идет о гипертонической болезни, язвенной болезни желудка и нарушении мозгового кровообращения, при которых возникают явления десинхро-ноза - нарушения суточного ритма физиологических показателей в сердечно-сосудистой, пищеварительной системах и мозговой гемодинамике .

Мелатонин - основной компонент пейсмейкерной системы организма. Он принимает участие в формировании циркадианного ритма, изменяя уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток

Нами были изучены циркадианные ритмы мозговой гемодинамики здоровых людей и больных хронической ишемией мозга различной степени выраженности с помощью ультразвуковой допплерографии. В результате предпринятых исследований была показана роль внешнего (относительно внешнего датчика времени - времени суток) и внутреннего (межполушарного) десинхроноза в клиническом течении и проявлениях хронической ишемии мозга. Проведенное лечение больных хронической ишемией мозга мелатонином в дозе 3 мг/сут за 30-40 мин до сна в течение 1 мес. привело не только к улучшению самочувствия, нормализации сна, повышению уровня бодрости, физической активности, уменьшению головных болей, шума в голове, головокружения, но и к синхронизации циркадианных ритмов мозговой гемодинамики у 60% пациентов, причем эта положительная динамика сохранялась до 6-8 мес. после проведенной терапии. Даны рекомендации о включении мелатонина в схемы комплексного лечения больных ишемическими заболеваниями головного мозга при сезонных (весна -осень) ухудшениях самочувствия и декомпенсациях мозгового кровообращения .

Последние годы в литературе обсуждается возможность использования мелатонина в качестве ноотропного препарата, в частности при патологически измененной познавательной деятельности мозга, например при болезни Альцгеймера . Через механизмы нейропротекции мелатонин противодействует запуску процессов апоптоза и дегенерации нейроцитов. По данным ряда исследователей, мелатонин способен ослаблять мнестические нарушения, улучшать сенсорное восприятие, ликвидировать дисритмические проявления, сопутствующие и другим органическим поражениям головного мозга .

Мелаксен® - один из трех зарегистрированных на территории РФ лекарственных средств, действующим веществом которых является мелатонин, различающихся между собой дозировкой и периодом полувыведения из организма. Оригинальный препарат Мелаксен® фирмы Unipharm Inc. (США) содержит 3 мг мелатонина в 1 таб.,

имеет незначительное количество вспомогательных веществ (кальция гидрофосфат, целлюлозу микрокристаллическую, магния стеарат), что обеспечивает минимум побочных явлений; период полувыведения составляет 1 ч. В январе 2015 г. ОАО «Нижфарм» (Россия) зарегистрировало препарат под названием Меларена, содержащий в 1 таб. 3 мг мелатонина и дополнительные вспомогательные средства (кроскармеллоза натрия, повидон К 25, кремния диоксид коллоидный, тальк, кальция стеарат). В 2010 г. компанией «Ипсен Фарма» (Франция) на рынок мелатонинсодержащих препаратов был выведен мелатонин пролонгированного действия под торговым названием Циркадин®. Одна таблетка данного лекарственного средства содержит 2 мг мелатонина, а период полувыведения составляет 3,5-4 ч. Вспомогательные вещества представлены метакрилатом, этилакрилатом, кальцием гидрофосфатом, лактозой, кремния диоксидом, тальком и магния стеаратом.

В нашей стране Мелаксен® является наиболее изученным мелатонином в разных аспектах, и прежде всего при неврологических заболеваниях .

Недавние исследования мелатонина (Мелаксен®), проведенные на базе ряда российских клиник, подтвердили его эффективность и высокую безопасность в лечении нарушений сна у пациентов разных возрастных групп и с различными сопутствующими заболеваниями. Было установлено нормализующее влияние терапии препаратом Мелаксен® не только на нарушения сна, но и на интеллек-туально-мнестические функции пациентов, что выражалось в повышении ясности сознания, улучшении памяти на текущие события, повышении социальной активности. В психоэмоциональной сфере наблюдалось снижение эмоциональной лабильности и тревожности, улучшение настроения, уменьшение чувства усталости. В недавнем (2012 г.) многоцентровом российском исследовании эффективности и безопасности Мелаксена при лечении инсомнии у 2 062 пациентов с хронической ишемией мозга, проведенном под руководством Я.И. Левина с соавт., использовались стандартные рекомендованные дозы мелатонина 3 мг, который назначался за 40 мин до сна в течение 24 дней. Оценка состояния пациентов проводилась до начала приема препарата, через 14 и 24 дня

По данным ряда исследователей, мелатонин способен ослаблять мнестические нарушения, улучшать сенсорное восприятие, ликвидировать дисритмические проявления, сопутствующие органическим поражениям головного мозга

лечения. Для определения эффективности лекарственного препарата использовались: балльная шкала субъективных характеристик сна, анкета скрининга апноэ во сне, Эпвортская шкала сонливости, госпитальная шкала тревоги и депрессии. На фоне приема Мелаксена было отмечено достоверное увеличение показателей по шкале балльной оценки субъективных характеристик сна, существенно

уменьшилось число больных с частыми ночными пробуждениями, длительным засыпанием, коротким ночным сном, плохим качеством утреннего пробуждения, множественными и тревожными сновидениями и недовольных качеством своего сна. Сделан вывод, что Мелаксен® в дозе 3 мг/сут перед сном эффективен в условиях амбулаторной и стационарной практики, хорошо переносится пациентами с хронической ишемией мозга и инсомнией и не вызывает проблем в комплексной терапии. Следует указать преимущество Мелаксена перед другими мелатони-нами - он отпускается без рецепта врача, что также указывает на высокую безопасность препарата.

Таким образом, вся история мелатонина с момента его открытия до современных многоцентровых клинических исследований мелатонинсодержащих препаратов демонстрирует многогранные возможности этого универсального адаптогена. Препарат мелатонина Мелаксен® продемонстрировал высокую эффективность и безопасность при различных нарушениях сна независимо от их генеза, дезорганизации суточных ритмов, расстройствах адаптации при стрессе, быстрой смене часовых поясов, при сменной работе и в комплексной терапии пациентов с сосудистыми заболеваниями головного мозга, сердца,

язвенной болезнью.

ЛИТЕРАТУРА

1. Анисимов В.Н. Мелатонин и его место в современной медицине. РМЖ, 2006. 14, 4. С. 269-273.

2. Арушанян Э.Б. Хронофармакология на рубеже веков. Ставрополь: Изд. СГМА, 2005. 576 с.

3. Арушанян Э.Б. Эпифизарный гормон мелато-нин и нарушения познавательной деятельности головного мозга. РМЖ, 2006. 14, 9, 673-678.

4. Арушанян Э.Б. Эпифизарный гормон мелатонин и неврологическая топология. РМЖ, 2006. 14, 23. С. 1657-1663.

5. Заславская P.M., Шакирова А.Н., Лилица Г.В., Щербань Э.А. Мелатонин в комплексном лечении больных сердечно-сосудистыми заболеваниями. М.: ИД МЕДПРАКТИКА-М, 2005. 192 с.

6. Заславская P.M., Шакирова А. Н. Мелатонин (мелаксен) в лечении артериальной гипертонии. Практикующий врач, 1, 2006. С. 10-17.

7. Инсомния: современные диагностические и лечебные подходы. Под ред. проф. Левина Я.И. М.: ИД Медпрактика-М, 2005. 116 с.

8. Кветная Т.В., Князькин И.В., Кветной И.М. Мелатонин - нейроиммуноэндокринный маркер возрастной патологии. СПб.: Изд-во ДЕАН, 2005. 144 с.

9. Комаров Ф.И., Рапопорт С.И., Малиновская Н.К., Анисимов В.Н. Мелатонин в норме и патологии. М.: ИД Медпрактика-М, 2004. 308 с.

10. Левин Я. И. Мелатонин (Мелаксен®) в терапии инсомнии. РМЖ, 2005. 13, 7. С. 498-500.

11. Малиновская Н.К., Комаров Ф.И., Рапопорт С.И., Райхлин Н.Т. и др. Мелатонин в лечении язвенной болезни двенадцатиперстной кишки. Клиническая медицина, 2006, 1. 5-11.

12. Мелатонин: перспективы применения в клинике. Под ред. С.И. Рапопорта. М.: ИМА Пресс, 2012. 175.

13. Мусина Н.З., Аляутдин Р.Н., Романов Б.К., Родионов О.Н. Коррекция биоритмов мелатонином у летного состава. Росс Мед. Журнал, 2005, 6. С. 37-39.

14. Нестерова М.В. Хронобиологические подходы к диагностике и хронокоррекция недостаточности мозгового кровоснабжения у больных пожилого возраста: методические рекомендации. Екатеринбург, 2001, 25.

15. Нестерова М.В. Циркадианная организация мозговой гемодинамики в норме и при развитии цереброваскулярной патологии: автореферат диссертации на соискание ученой степени доктора медицинских наук, Пермь, 2002, 37.

16. Нестерова М.В., Оранский И.Е. Биологические ритмы мозговой гемодинамики. Екатеринбург: «СВ-96», 2002, 151.

17. Яхно Н.Н. Отчет о клинической эффективности препарата Мелаксен® фирмы Юнифарм-США при лечении инсомний. Лечащий врач, 1999, 1.

18. Arendt J. Importance and relevance of melatonin to human biological rhythms. J Neuroendocrinol 2003; 15:427-431.

19. Arendt J. Melatonin and the mammalian pineal gland. London, Chapman & Hall, 1995.

20. Bartsch C, Bartsch H, Karasek M. Melatonin in clinical oncology. Neuroendocrinol Lett 2002; 23 (suppl 1): 30-38.

21. Baskett JJ, Broad JB, Wood PC et al. Does melatonin improve sleep in older people? A randomized crossover trial. Age Ageing 2003; 32:164-170.

22. Bergiannaki JD, Soldatos CR, Paparrigopoulos TJ, Syrengelas M, Stefanis CN. Low and high melatonin excretors among healthy individuals. J Pineal Res 1995; 18: 159-164.

23. Brzezinsky A., Vangel M.G., Wurtman RJ. et al. Effects of endogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 2005; 9:41-50.

24. Buscemi N., Vansermeer B., Hooton N. et al. Efficacy and safety of endogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006; 332: 385-393.

25. Cardinali D.P., Brusco L.I., Perez Lloret S., Furio A.M. Melatonin in sleep disorders and jet-lag. Neuroendocrinol Lett 2002; 23 (suppl 1): 9-13.

26. Carrillo-Vico A., Guerrero J.M., Lardone PJ., Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine 2005; 27: 189-200.

27. Dai J., Inscho E.W., Yuan L., Hill S.M. Modulation of intracellular calcium and calmodulin by melatonin in MCF-7 human breast cancer cells. J Pineal Res 2002; 32:112-119.

28. Dubocovich M.L., Cardinali D.P., Delagrange P. etal. Melatonin receptors. In The IUPHAR Compendium of Receptor Characterization and Classification, 2nd edition, lUPHARMedia, London, UK, 2000, pp.270-277.

29. Ekmekcioglu C. Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother 2006; 60:97-108.

30. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson"s disease: evidence supporting it. Ann Neurobiol 1991; 32: 804-812.

31. Ferrari E., Arcaini A., Gornati R. et al. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol2000; 35: 1239-1250.

32. Karasek M., Reiter RJ., Cardinali D.P., Pawlikowski M. The future of melatonin as a therapeutic agent. Neuroendocrinol Lett 2002; 23 (suppl 1): 118-121.

33. Karasek M. Melatonin in human physiology and pathology. In Frontiers in Chronobiology Research, F Columbus (ed). Hauppage, NY, Nova Science, 2006, pp. 1-43.

34. Kunz D, Mahlberg R, Muller C, Tilmann A, Bes F. Melatonin in patients with reduced REM sleep duration: two randomized controlled trials. J Clin Endocrinol Metab2004; 89: 128-134.

35. Moretti R.M., Montagnani Marelli M., Motta M., Limonta P. Oncostatic activity of a thiazolidine-dione derivative on human androgen-depend-ent prostate cancer cell. Int J Cancer 2001; 92: 733-737.

36. Nosjean 0., Ferro M., Coge F. et al. Identification of the melatonin-binding site MT3 as the qui-none reductase 2. J Biol Chem 2000; 275: 31311-31317.

37. Pacchierotti C., Lapichino S., Bossini L., Pieraccini F., Castrogiovanni P. Melatonin in psychiatric disorders. Front Neuroendocrinol 2001; 22: 18-32.

38. Pandi-Perumal S.R., Esquifino A.L., Cardinali D.P., Miller S.C., Maestroni GJ.M. The role of melatonin in immunoenhamcement: potential application in cancer. Int J Exp Pathol 2006; 87:81-87.

39. Pandi-Perumal S.R., Seils L.K., Kayumov L., Ralph M.R., Lowe A., Moller H., Swaab D.F. Senescence, sleep, and circadian rhythms. Aging Res Rev 2002; 1: 559-604.

40. Reppert S.M., Godson C., Mahle C.D., Weaver D.R., Slaugenhaupt S.A., Gusella J.F. Molecular characterization of second melatonin receptor expressed in human retina and brain: the Mel 1 b melatonin receptor. Proc Natl Acad Sci USA1995; 92: 8734-8738.

41. Sainz R.M., Mayo J.C., Rodriguez, Tan D.X., Lopez-Burillo S., Reiter RJ. Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 2003; 60:1407-1426.

42. Sanchez-Barcelo EJ., Cos S., Mediavilla D., Martinez-Campa G., Alonso-Gonzalez C. Melatonin-estrogen interactions in breast cancer. J Pineal Res 2005; 38: 217-222.

43. Savaskan E., Ayoub M.A., Ravid R. et aL Reduced hippocampal MT2 melatonin receptor expression in Alzheimer"s disease. J Pineal Res 2005; 38: 10-16.

44. Savaskan E., Olivieri G., Meier F. et al. Increased melatonin la-receptor immunoreactivity in the hippocampus of Alzheimer"s disease patients. J Pineal Res 2002; 31: 59-62.

45. Srinivasan V., Pandi-Perumal S.R., Maestroni MJ.G., Esquifino A, Harderland R, Cardinali D.P. Role of melatonin in neurodegenerative diseases. Neurotoxicity Res 2005; 7: 293-318.

46. Vijayalaxmi, Thomas R.C., Reiter RJ., Herman T.S. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002; 20: 2575-2601.

47. Wu YH, Swaab DF. The human pineal gland and melatonin in aging and Alzheimer"s disease. J Pineal Res 2005; 38: 145-152.

48. Интернет-источник http:/ /melatonins.ru/.



Понравилась статья? Поделитесь ей