Контакты

Механизм иммунных реакций. Механизм развития аллергических реакций. Иммунитет. виды иммунитета. нарушения

Лимфоидные клетки организма выполняют основную функцию в развитии иммунитета - невосприимчивости, не только по отношению к микроорганизмам, но и ко всем генетически чужеродным клеткам, например при пересадке тканей. Лимфоидные клетки обладают способностью отличать «свое» от «чужого» и устранять «чужое» (элиминировать).

Родоначальницей всех клеток иммунной системы явля­ется кроветворная стволовая клетка. В дальнейшем проис­ходит развитие двух типов лимфоцитов: Т и В (тимусзависимых и бурсазависимых). Эти названия клетки получили в связи с их происхождением. Т-клетки развиваются в тимусе (зобной, или вилочковой железе) и под влиянием веществ, выделяемых тимусом, в периферической лимфоидной ткани.

Название В-лимфоциты (бурсазависимые) произошло от слова «бурса» - сумка. В сумке Фабрициуса у птиц развиваются клетки, сходные с В-лимфоцитами человека. Хотя у человека не найдено органа, аналогичного сумке Фабрициуса, название связано с этой сумкой.

При развитии В-лимфоцитов из стволовой клетки они проходят несколько стадий и преобразуются в лимфоци­ты, способные образовывать плазматические клетки. Плазматические клетки в свою очередь образуют антите­ла и на их поверхности имеются иммуноглобулины трех классов: IgG, IgM и IgA.

Иммунный ответ в виде продукции специфи­ческих антител происходит следующим образом; чужерод­ный антиген, проникнув в организм, прежде всего фагоцитируется макрофагами. Макрофаги, перерабатывая и кон­центрируя антиген на своей поверхности, передают инфор­мацию о нем Т-клеткам, которые начинают делиться, «созревают» и выделяют гуморальный фактор, включа­ющий в антителопродукцию В-лимфоциты. Последние также «созревают», развиваются в плазматические клет­ки, которые и синтезируют антитела заданной специфич­ности.

Так, соединенными усилиями макрофаги, Т - и В-лимфоциты осуществляют иммунные функции организма - защиту от всего генетически чужеродного, в том числе и от возбудителей инфекционных болезней. Защита с по­мощью антител осуществляется таким образом, что синте­зированные к данному антигену иммуноглобулины, соеди­няясь с ним (антигеном), подготавливают его, делают чувствительным к разрушению, обезвреживанию различ­ными естественными механизмами: фагоцитами, компле­ментом и пр.



Теории иммунитета. Значение антител в развитии иммунитета неоспо­римо. Каков же механизм их образования? Этот вопрос в течение длительного времени является предметом споров и обсуждений.

Создано несколько теорий антителообразования, которые можно разделить на две группы: селективные (селекция - отбор) и инструктив­ные (инструктировать-наставлять, направлять).

Селективные теории предполагают существование в организме уже готовых антител к каждому антигену или клеток, способных синтезировать эти антитела.

Так, Эрлих (1898) предполагал, что клетка имеет готовые «рецепто­ры» (антитела), которые соединяются с антигеном. После соединения с антигеном, антитела образуются еще в большем количестве.

Такого же мнения придерживались создатели других селективных теорий: Н. Ерне (1955) и Ф. Вернет (1957). Они утверждали, что уже в организме плода, а затем и во взрослом организме имеются клетки, способные к взаимодействию с любым антигеном, но под влиянием определенных антигенов определенные клетки вырабатывают «нужные» антитела.

Инструктивные теории [Гауровитц Ф., Полинг Л., Ландштей-нер К., 1937-1940] рассматривают антиген, как «матрицу», штамп, на котором формируются специфические группировки молекулы антител.

Однако эти теории не объясняли всех явлений иммунитета и в настоящее время наиболее принятой является клонально-селекционная теория Ф. Бернета (1964). Согласно этой теории в эмбриональном периоде в организме плода имеется множество лимфоцитов - клеток-предшественников, которые при встрече с собственными антигенами разрушаются. Поэтому во взрослом организме уже нет клеток для выработки антител к собственным Антигенам. Однако, когда взрослый организм встречается с чужеродным антигеном, происходит селекция (отбор) клона иммунологически активных клеток и, они вырабатывают специфические антитела, направленные против данного «чужого» антиге­на. При повторной встрече с этим антигеном клеток «отобранного» клона уже больше и они быстрее образуют большее количество антител. Эта теория наиболее полно объясняет основные явления иммунитета.

Механизм взаимодействия антигена и антител имеет различные объяснения. Так, Эрлих уподоблял их соедине­ние реакции между сильной кислотой и сильным основани­ем с образованием нового вещества типа соли.

Бордэ считал, что антиген и антитела взаимно адсорби­руют друг друга подобно краске и фильтровальной бумаге или йоду и крахмалу. Однако эти теории не объясняли главного - специфичности иммунных реакций.

Рис.67Схематическое изображение взаимодействия антител и

антигена. д - по схеме Маррека; Б - по схеме, Полинга. Структура комплекса: а - при оптимальных соотношениях; б - при избытке антигена; в - при избытке антител.

Наиболее полно механизм соединения антигена и анти­тела объяснен гипотезой Маррека (теория «решетки») и Полинга (теория «фермы») (рис. 33). Маррек рассматрива­ет соединение антигена и антител в виде решетки, в которой антиген чередуется с антителом, образуя решет­чатые конгломераты. Согласно гипотезе Полинга (см. рис. 33) антитела имеют две валентности (две специфиче­ские детерминанты), а антиген несколько валентностей - он поливалентен. При соединении антигена и антител образуются агломераты, напоминающие «фермы» по­строек.

При оптимальном соотношении антигена и анти­тел образуются большие прочные комплексы, видимые простым глазом. При избытке антигена каждый активный центр антител заполнен молекулой антигена, не хватает антител для соединения с другими молекулами антигена и образуются мелкие, невидимые глазом ком­плексы. При избытке антител, для образования решетки не хватает антигена, детерминанты антител отсут­ствуют, и видимого проявления реакции нет.

На основании изложенных теорий специфичность реак­ции антиген - антитело сегодня представляют как взаимо­действие детерминантной группы антигена и активных центров антитела. Так как антитела формируются под воздействием антигену, их структура соответствует детерминантным группам антигена. Детерминантная группа антигена и фрагменты активных центров антитела имеют противоположные электрические заряды и, соединяясь, образуют.комплекс, прочность которого зависит от соот­ношения компонентов и среды, в которой они взаимодей­ствуют.

Учение об иммунитете - иммунология - достигло за последние десятилетия больших успехов. Раскрытие зако­номерностей иммунного процесса позволило решить раз­личные задачи во многих областях медицины. Разработа­ны и совершенствуются методы предупреждения многих инфекционных заболеваний; лечения инфекционных и ряда других (аутоиммунных, иммунодефинитных) болез­ней; предупреждения гибели плода при резус-конфликтных ситуациях; трансплантации тканей и орга­нов; борьбы со злокачественными новообразованиями; иммунодиагностики - использования реакций иммунитета в диагностических целях.

Реакции иммунитета - это реакции между антигеном и антителом или между антигеном и сенсибилизированными лимфоцитами, которые происходят д живом организме и могут быть воспроизведены в лабораторных усло­виях.

Реакции иммунитета вошли в практику диагностики инфекционных болезней в конце XIX-начале XX века. В силу высокой чувствительности (улавливают анти­гены в очень больших разведениях) и, главное, строгой специфичности (позволяют отличить близкие по со­ставу антигены) они нашли широкое применений в реше­нии теоретических и практических вопросов медицины и биологии. Этими реакциями пользуются иммунологи, микробиологи, инфекционисты, биохимики, генетики, мо­лекулярные биологи, экспериментальные онкологи и вра­чи других специальностей.

Реакции антигена с антителом называются сероло­гическими (от лат. serum - сыворотка) или гумораль­ными (от лат. humor-жидкость), потому что участву­ющие в них антитела (иммуноглобулины) всегда находятся в сыворотке крови.

Реакции антигена с сенсибилизированными лимфоцитами называются клеточными.

Рис.68 Взаимодействие антигенов с антителами

Рис.69 Схема иммунного ответа.

ветствующих лимфоцитов, синтезирующих специфические иммунные глобулины. С этого момента организм становится готовым запустить антителогенез против любого антигена.

Кроме указанного, существует ряд других возможных механизмов индукции специфических иммунных реакций.

1. Синтез антител после перенесенных инфекций и бактериносительство.

2. Продукция антител, индуцированная перекрестно-регулирующими антигенами представителей нормальной микрофлоры кишечника, других полостей и поверхностей с патогенной флорой.

3. Образование сети антиидиотипических антител, несущих «внутренний образ» антигена. Исходя из этой теории, антитела против какой-дибо антигеннной детерминанты способны индуцировать образование антиидиотипических антител, взаимодействующих как с антителом-индуктором, так и с антиген-связывающими рецепторами. При определенной конценрации такие антидиотипические антитела без ввведения извне причинного антигена, могут обеспечить специфический антительный иммунный ответ.

4. Высвобождение депонированных в организме антигенов при повышении проницаемости мембран клеток, их содержащих, в результате действия эндо- и экзотоксинов, кортикостероидов, низкомолекулярных нуклеиновых кислот, облучения и других факторов. Редепонированные таким образом антигены способны при определенных условиях запустить специфический иммунный ответ.

Существует ряд неспецифических механизмов регуляции иммунных реакций.

1. Диета. Установлено, что пищевой рацион без животных белков снижает образование иммунных глобулинов. Исключение из питания нуклеиновых кислот даже при сохранении достаточной калорийности вызывает торможение клеточного иммунитета. Такой же эффект обусловливается дефицитом витаминов. Недостаток цинка вызывает вторичную иммунологическую недостаточность по главным звеньям иммунитета. Продолжительное голодание способствует резкому понижению иммунологической реактивности и общей сопротивляемости к инфекциям.

2. Кровопускания. Этот способ лечения имеет многовековую историю, однако иммунологические эффекты воздействия установлены недавно, физиологические по дозе кровопускания обусловливают стимуляцию антителогенеза к широкому спектру антигенов. Более

значительные кровопускания вызывают образование фактора, тормозящего активность макромолекулярных антител, т.е. реализуют регуляцию этого механизма защиты. Таким образом, реализуется способ временноого снижения активности циркулирующих антител без блокирования процесса их образования.

Кроме перечисленных механизмов, существуют также внутренние регуляторы иммуногенеза.

3. Иммуноглобулины и продукты их деградации. Накопление в организме или IgM с одновременным поступлением антигена неспецифически стимулируют иммунный ответ на него, IgCl, напротив, наделены способностью тормозить образование специфических антител в таких условиях. Однако при образовании комплекса антигенантитело в избытке иммунного глобулина наблюдается эффект стимуляции иммунного ответа, особенно вторичного, в тот период, когда содержание антител после первичной иммунизации резко снижено, но следовая их концентрация еще определяется. Следует отметить, что продукты катаболического разрушения этих белков также обладают высокой биологической активностью. F(ab)2 фрагменты гомологического IgO способны неспецифически усиливать иммуногенез. Продукты расщепления Fc-фрагмента иммуноглобулинов различных классов усиливают миграцию и жизнеспособность полиморфноядерных лейкоцитов, презентировавние антигена А-клетками, благоприятствуют активации Т-хелперов, повышают иммунную реакцию на тимусзависимые антигены.

4. Интерлейкины. К интерлейкинам (ИЛ) относятся факторы полипептидной природы, не относящиеся к иммуноглобулинам, синтезируемые лимфоидными и нелимфоидными клетками, обусловливающими прямое действие на функциональную активность иммунокомпентентных клеток. ИЛ не способны самостоятельно индуцировать специфический иммунный ответ. Они его регулируют. Так, ИЛ-1 в числе прочих эффектов, активизирует пролиферацию сенсибилизированных антигеном Т- и В-лимфоцитов, ИЛ-2 усиливает пролиферацию и функциональную активность В-клеток, как, впрочем и Т-лимфоцитов, их субпопуляций, НК-клеток, макрофагов, ИЛ-3 является ростовым фактором стволовых и ранних предшественников гемопоэтических клеток, ИЛ-4 повышает функцию Т-хелперов, реализует пролиферацию активированных В-клеток. Кроме того, ИЛ- 1,2,4 в той или иной степени регулируют функцию макрофагов. ИЛ-5 способствует пролиферации и дифференцировке стимулированных

Рис 1. Классификация имунитета

В-лимфоцитов, регулирует передачу хелперного сигнала с Т- на В- лимфоциты, способствует созреванию антителообразующих клеток, вызывает активацию эозинофилов. ИЛ-6 стимулирует пролиферацию тимоцитов, В-лимфоцитов, селезеночных клеток и дифференцировку Т-лимфоцитов в цитотоксические, активирует пролиферацию предшественников гранулоцитов и макрофагов. ИЛ-7 является ростовым фактором пре-В- и пре-Т-лимфоцитов, ИЛ-8 выполняет роль индуктора острой воспалительной реакции, стимулирует адгезивные свойства нейтрофилов. ИЛ-9 стимулирует пролиферацию и рост Т- лимфоцитов, модулирует синтез IgE, IgD В-лимфоцитами, активированными ИЛ-4. ИЛ-10 подавляет секрецию гамма-интерферона, синтез макрофагами фактора некроза опухоли, ИЛ-1, -3, -12; хемокинов. ИЛ-11 практически идентичен по биологическим потенциям с ИЛ-6, регулирует предшественников гемопоэза, стимулирует эритропорез, колониеобразование мегакариоцитов, индуцирует острофазовые белки. ИЛ-12 активизирует нормальные киллеры, дифференцировку Т-хелперов (Тх0 и Тх1) и Т-супрессоров в зрелые цитоксические Т- лимфоциты. ИЛ-13 подавляет функцию мононуклеарных фагоцитов. ИЛ-15 сходен по действию на Т-лимфоциты с ИЛ-12, активизирует нормальные киллерные клетки. Недавно выделен ИЛ-18, образуемый активированными макрофагами и стимулирующий синтез Т-лимфоцитами интерферонов (Инф), а макрофагами - ИЛ-1, -8 и ТНФ. Таким образом, Ил способны влиять на основные компоненты иммунологических реакций на всех этапах их развертывания. Следует, однако, заметить, что группа интерлейкинов входит в состав более широкой группы цитокинов - белковых молекул, образуемых и секретируемых клетками иммунной системы. В настоящее время они подразделяются на интерлейкины, колониестимулирующие факторы (КСФ), факторы некроза опухоли (ФНО), интерфероны (Инф), трансформирующие факторы роста (ТФР). Функции их чрезвычайно разнообразны. Например, воспалительные процессы регулируются противовоспалительными (ИЛ-1, -6, -12, ТНФ, Инф) и противовоспалительными цитокинами (ИЛ-4, -10, ТФР), специфические иммунологические реакции - ИЛ-1, -2, -4, -5, -6, -7, -9, -10, -12, -13, -14, -15, ТФР, Инф; миеломоноцитопоэз и лимфопоэз - Г-КСФ, М-КСФ, ГМ-КСФ, ИЛ-3, -5, -6, -7, -9, ТФР.

5. Интерферон. Как уже говорилось, к числу регуляторов иммуногенеза относятся интерфероны. Это белки с молекулярной массой от 16000 до 25000 дальтон, они продуцируются различными клетками,

реализуют не только противовирусный эффект, но и регулируют иммунологические реакции. Известны три типа интерферонов: α- лейкоцитарный интерферон образуется нулевыми клетками, фагоцитами, его индукторами являются клетки злокачественных опухолей, ксеногенные клетки, вирусы, митогены В-лимфоцитов; β-фибробластный интерферон вырабатывается фибробластами и эпителиальными клетками, индуцируется двуспиральной вирусной РНК и другими, в том числе естественными, нуклеиновыми кислотами, многими патогенными и сапрофитными микроорганизмами; γ-иммунный интерферон, его производителями служат Т-и В-лимфоциты, макрофаги, а индукторами - антигены и митогены Т-клеток; γ-интерферон высокоактивен, наделен специфичностью эффектов против определенных агентов.

Интерферон, индуцируемый иммунокомпетентными клетками, при определенных условиях проявляет иммуностимулирующие свойства. В частности, α-интерферон увеличивает продукцию иммуноглобулинов, усиливает ответ В-лимфоцитов на специфический хелперный фактор. Однако при увеличении концентрации интерферона или его синтезе до иммунизации отмечается подавление антителогенеза на тимусзависимые и тимуснезависимыые антигены. Действие интерферона на реакции клеточного иммунитета также носит модулирующий характер. В периоде до развертывания ГЗТ интерферон ее подавляет, в момент ее индукции - стимулирует. По-видимому, непосредственная регуляция иммунного ответа реализуется через усиление экспрессии мембранных белков лимфоцитами. Особенно это качество выражено у α-интерферона.

6. Система комплемента состоит примерно из 20 сывороточных белков крови, некоторые из них представлены в плазме в форме проферментов, которые могут активизироваться другими ранее активизированными компонентами системы или иными ферментами, например, плазмином. Имеются также и специфические ингибиторы ферментативной и неферментативной природы. Тот факт, что активаторами системы комплемента могут быть иммуноглобулины, иммунные комплексы и другие участники иммунных реакций, а также то, что клетки иммунной системы (лимфоциты, макрофаги) имеют рецепторы для компонентов системы, обосновывает ее регулирующую роль в иммуногенезе.

Существуют два пути активации системы комплемента - классический и альтернативный. Индукторами классического пути явля-

ются JgG1, G2, G3, JgM, входящие в состав иммунных комплексов, а также некоторые другие вещества. Альтернативный путь индуцируется различными агентами (агрегированными теплом IgA, M, G) и некоторыми другими соединениями. Этот процесс сливается с классическим в один общий каскад на стадии фиксации компонента С3. Данная разновидность активации требует присутствия Mg2+.

Видимо, функция комплемента in vivo состоит в предотвращении формирования больших иммунных комплексов. Поэтому в здоровом организме их возникновение достаточно затруднено. Запуск каскада активации комплемента формирующимися иммунными комплексами приводит к образованию его различных фрагментов, обуславливающих в организме процессы, нормальный ход которых нередко изменяется при нарушениях в системе комплемента. Так, у людей, дефицитных по каким-либо компонентам комплемента, часто возникает волчаночноподобный синдром или болезни иммунных комплексов.

В процессе активации комплемента образуются ряд факторов с иммуннотропным действием. Так, фрагменты С3а, С5а, С5В67 обладают хемотактическим эффектом, способствуя направленной аккумуляции клеток. Взаимодействие фрагмента с С3-рецепторами на В-лимфоцитах индуцирует активацию этих клеток митогенами и антигенами. С другой стороны, некоторые В-митогены и Т-независимые антигены индуцируют альтернативный путь активации комплемента.

7. Миелопептиды. Миелопептиды в процессе нормального метаболизма синтезируются клетками костного мозга различного вида животных и человека, не имеют аллогенного и ксеногенного ограничения. Представляют собой комплекс пептидов, не способных индуцировать иммунный ответ, но обладающих иммунорегуляторными свойствами. Они способны стимулировать антителообразование на пике иммунного ответа, в том числе при дефиците количества антителообразующих клеток или использовании слабоиммунногенных антигенов. Мишенями для модуляторов являются Т- и В-лимфоциты, а также макрофаги. Они переводят клетки иммунологической памяти в антителообразующие без деления, инактивируют Т-супрессоры, положительно влияют на дифференцировку предшественников цитолитических лимфоцитов и пролиферацию и дифференцировку столовых клеток, увеличивают содержание общих Т-лимфоцитов, Т-хелперов, интенсифицируют РБТЛ Т-клеток на ФГА и В-клеток на PWM. Кроме иммуннорегуляторных потенций, миелопептиды обла-

дают опиатноподобной активностью, вызывают налоксонзависимый аналгетический эффект, связываются с опиатными рецепторами мембраны лимфоцитов и нейронов, участвуя, таким образом, в нейроиммунном взаимодействии.

МП-2 обладает противоопухолевой активностью, отменяя ингибиторное действие лейкозных клеток на функциональную активность Т- лимфоцитов; он модифицирует экспрессию на них CD3- и CD4-анти- генов, нарушенную растворимыми продуктами опухолевых клеток.

8. Пептиды тимуса. Особенностью модуляторов тимического происхождения является то, что они синтезируются вилочковой железой постоянно, а не в ответ на антигенный стимул. К настоящему времени из тимуса получен ряд ииммунологически активных факторов: Т-активин, тималин, тимопоэтины, тимоптин и др. Молекулярная масса модуляторов составляет в среднем от 1200 до 6000 дальтон. Некоторые исследователи называют их тимусными гормонами. Все эти препараты близки по своему действию на иммунную систему. При сниженных показателях иммунного статуса тимусные модуляторы способны повышать качество Т-лимфоцитов и их функциональную активность, способствуют трансформации незрелых Т-клеток в зрелые, стимулируют распознавание тимусзависимых антигенов, хелперную и киллерную активность. Одновремкнно они активизируют продукцию антител и могут способствовать отмене иммунологической толерантности к некоторым антигенам, повышают выработку α- и γ-интерферонов, интенсифицируют фагоцитоз нейтрофилов, и макрофагов, активизируют факторы неспецифической антиинфекционной резистентности и процессы регенерации тканей.

9. Эндокринная система. Уже давно установлено, что важнейшими регуляторами иммунологического гомеостаза являются эндогенные гормоны. В спектре действия этих соединений находятся неспецифическая стимуляция и ингибиция специфических иммунных реакций, запущенных конкретными антигенами. Сами гормоны индукторами иммунного ответа быть не могут. Следует сразу отметить, что гормоны действуют в тесной связи друг с другом, когда одни вещества инициирууют секрецию других. Существует также четкая зависимость дозы-эффекта. Низкие концентрации, как правило, активируют, а высокие супрессируют иммунологические механизмы.

Кортизол относится к глюкортикоидам, регулирует углеводный обмен и одновременно супрессирует клеточные и гуморальные иммунные реакции. Отмечается подавление антителообразования

при первичном и вторичном иммунном ответах. В принципе за счет лизиса лимфоидных клеток обусловленных кортизолом, возможен выход антител и развитие таким образом анамнестической антительной реакции.

Минералокортикоиды (дезоксикортикостерон и альдостерон) играют важную роль в электролитном обмене. Они задерживают в организме натрий и увеличивают выход калия. Оба гормона усиливают воспалительную реакцию, продукцию иммунных глобулинов.

Установлено, что почти все гормоны аденогипофиза (СТГ, АКТГ, гонадотропные) влияют на иммунокомопетентные клетки. Например, АКТГ стимулирует секрецию коры надпочечников и таким образом воспроизводит эффекты кортизона, т.е. подавляет иммунологические реакции.

Соматотропный гормон, напротив, стимулирует воспаление, пролиферацию плазматических клеток, интенсифицирует клеточные механизмы.

Тиреотропный гормон восстанавливает подавленную различными факторами пролиферацию клеток. Околощитовидные железы, регулирующие содержание Са2+ в плазме, изменяют митотическую активность клеток костного мозга и тимуса. Гормон нейрогипофиза - вазопрессин, стимулирует дифференцировку Т-лимфоцитов. Пролактин ингибирует РБТЛ на ФГА и увеличивает дифференцировку Т-лимфоцитов. Эстрогены (эстрадиол и эстрон) усиливают функцию фагоцитов, образование γ-глобулинов. Эстрогены, способны отменить иммуносупрессорный эффект кортикостероидов. Подобные эффекты установлены у фоллитропина, пролактина, лютропина. Однако в больших концентрациях указанные гормоны подавляли иммунологические реакции. Наконец, андрогены оказались наделенными в основном иммуносупрессорнными свойствами, ориентированными главным образом против гуморального звена иммунитета.

10. Метаболические процессы в организме активно влияют на состояние иммунной системы. Накопление в организме продуктов перекисного окисления липидов, бета-липопротеидов, холестерина, биогенных аминов, снижение пула циркулирующих низкомолекулярных нуклеиновых кислот, супрессия антиоксидантной системы обусловливают также угнетение иммунологической реактивности.

При этом продукты ПОЛ отрицательно зависят от АОС, содержания Т-клеток (CD3+), их регуляторных субпопуляций (CD4+, CD8+), положительно - от концентрации ЦИК, биогенных аминов, острофа-

зовых белков и т.д. Антиоксидантная система находится с биогенными аминами в обратной зависимости.

В целом, развитие патологии сопровождается активацией процессов перекисного окисления липидов, что приводит к увеличению уровня холестерина, β-липопротеидов, сопровождаясь снижением активности антиоксидантной защиты, накоплением биогенных аминов. Указанные изменения происходят на фоне формирования у больных диснуклеотидоза, нарушения белково-синтетических процессов, реализуемых по схеме ДНК-РНК-белок. Это приводит, с одной стороны, к угнетению выраженности иммунных, особенно клеточных реакций, дисбалансу регуляторных субпопуляций, с другой - к провокации развития аллергии, с третьей - к функциональным и деструктивным изменениям клеток различных систем организма, с четвертой - к расстройствам, тесно связанным с иммунной нейроэндокринной регуляции гомеостаза.

Таким образом, если специфичность иммунных реакций определяется характеристикой причинного антигена, то их выраженность зависит от множества причин. Она может быть недостаточной или слишком сильной, кратковременной или избыточно пролонгированной. Эти обстоятельства диктуют необходимость коррекции выраженности иммунологических реакций. В естественных условиях функционирование лимфоидных клеток с одной стороны подвержено стимулирующему действию тимусных факторов, а с другой - тормозному влиянию эндогенных кортикостероидов. Нерациональное вмешательство в деятельность иммунной системы с целью стимуляции или супрессии ее звеньев может расстроить этот баланс и привести к иммунопатологии.

Предположение об отсутствии единого механизма аллергии к молоку было высказано Vendel еще в 1948 г. Автор отмечал быструю и замедленную реакции на коровье молоко у больных с идиосинкразией к этому продукту. За последние годы наши знания об иммунных механизмах, лежащих в основе пищевой аллергии, расширились, но многие вопросы все еще остаются неясными. Трудности в известной мере связаны с тем обстоятельством, что циркулирующие антитела к белкам коровьего молока часто обнаруживают у совершенно здоровых людей и не выявляют у ряда больных с симптомами, явно укладывающимися в картину аллергии к молоку. По сути этот факт не должен вызывать удивления, поскольку антитела выполняют защитную функцию в организме, если количество их остается в пределах нормы, а иммунная система в целом хорошо сбалансирована. Согласно современным представлениям, в основе пищевой аллергии и других видов гиперчувствительности, как правило, лежит именно нарушение баланса иммунных механизмов. Имеющиеся данные свидетельствуют в пользу того, что большинство иммунных реакций, включая аллергические, не обусловлены каким-либо одним иммунным механизмом.

Наиболее принятая классификация механизмов аллергии разработана Gell и Coombs ; авторы выделяют четыре основных типа реакций:
Тип I. Повышенная чувствительность анафилактического или немедленного типа. Реакция этого типа возникает в результате взаимодействия между аллергеном или антигеном и специфическим к нему IgE антителом (или короткоживущим IgG) на поверхности тучных клеток с последующим высвобождением химических медиаторов, которые увеличивают местный кровоток, проницаемость сосудов и стимулируют приток различных клеток к месту реакции.

Тип II. Цитотоксическая, или цитолитическая реакция. При реакции этого типа антитела (обычно IgG или IgM классов) реагируют с антигенным компонентом клетки. Антиген может быть частью клеточной структуры; возможно также, что экзогенный антиген или гаптен адсорбированы на поверхности клетки. Связывание и активация комплемента, как правило, участвуют в цитолитическом повреждении ткани.

Тип III. Реакция типа феномена Артюса, или иммунных комплексов. Антиген (обычно при его избытке) реагирует со специфическим антителом (IgG или IgM), затем происходит связывание с комплементом и образование циркулирующих иммунных комплексов. Последние вызывают васкулиты, местную воспалительную реакцию и повреждение ткани. Высвобождаемые комплементом хемотаксические факторы стимулируют приток к месту реакции полиморфно-ядерных лейкоцитов, которые частично разрушаются и в свою очередь высвобождают протеолитические ферменты, приводящие к дальнейшему повреждению ткани.

Тип IV. Повышенная чувствительность замедленного типа, или реакция клеточного иммунитета. Сенсибилизированные Т-лимфоциты мигрируют к месту скопления антигенов и реагируют с клеткой-мишенью или микроорганизмом, в котором находится антиген. Одновременно Т-клетки высвобождают разнообразные реактивные вещества, называемые лимфокинами, которые способствуют развитию иммунных реакций и нередко участвуют в повреждении ткани.

Как известно, в ходе иммунной ответной реакции между чужеродным антигеном и реагирующим только с ним (специфическим) антителом возникает физико-химическая связь, которая способствует нейтрализации, расщеплению антигенов. Возникает вопрос: каким путем может организм образовывать специфическое антитело на каждый из сотен тысяч антигенов, происходящих из внешней среды. Недавно еще пытались объяснить иммунную ответную реакцию двумя противоречащими друг другу теориями: инструктивной и избирательной теорией.

I. Инструктивная теория : антиген, дав образец, вызывает образование специфического, реагирующего только с ним антитела (эта теория в такой форме может считаться опровергнутой.)

II. Избирательная теория : в результате проведенных генетических исследований и выяснения химической структуры иммуноглобулина избирательная теория может считаться доказанной. На поверхности антигенов имеются детерминантные группы (боковые цепи); организм обладает унаследованной способностью, заложенной в ДНК клеточного ядра, образовывать реагирующие с антигенами специфические антитела. Если организм встречается с определенным антигеном, в результате стимуляции обладающие реактивным белком лимфоциты селективно размножаются; лимфоцитарная популяция, способная к образованию такого специфического антитела, называется клоном.

Образовавшееся антитело, по имеющемуся опыту, только отчасти специфично, ибо близкие виды или белки с подобной функцией дают перекрестную реакцию, ив отдельных случаях даже системно далекие антигены могут давать реакцию (например, антиген Форсмана). Это обусловлено тем, что в ходе иммунизации в организм почти всегда вводится одна или несколько комплексных белковых молекул, обладающих многочисленными характерными группами (детерминантами). При исследовании кристаллических и синтетических белков было, однако, установлено, что одна молекула иммуноглобулина может реагировать не более чем с двумя детерминантами.

В отношении антигенового детерминанта, согласно исследованиям Левина, в результате генетического регулирования к иммунной ответной реакции относится закон: "все или ничего". Согласно нашим исследованиям, это же правило относится и к аллергенам: чувствительный к синтетическому лизину-вазопрессину ребенок не дает никакой аллергической реакции на окситоцин, хотя последний только одной циклической аминокислотой отличается от вазопрессина, помимо лизина, представляющего биологическую эффективность.

Иммунотолерантность . Это состояние противоположно иммунитету: организм на введение чужеродного антигена не дает иммунного ответа, что, как вытекает из вышесказанного, может возникать в результате генетической особенности: у данного лица отсутствует способный к образованию соответствующего антитела лимфоцитарный клон. Под влиянием очень большого количества (насыщающего) антигена или часто повторяемой малой дозы антигена уже существующая иммунная ответная реакция может прекратиться и может возникнуть толерантность по отношению к определенному антигену, т. е. организм временно или окончательно потеряет способность синтезировать или отдавать иммунные вещества по отношению к данному антигену. Толерантность является такой же специфической, как и иммунная ответная реакция: она относится только к определенному антигену.

Механизм приобретенной толерантности:

1. Перевес антигенов блокирует антитела, находящиеся на поверхности лимфоцитов В, и препятствует размножению соответствующих клеточных клонов. Торможение клеточных функций с помощью цитотоксических средств способствует возникновению толерантности.

2. Антитело при введении его в большой концентрации также может привести к возникновению толерантности, связывая антиген еще до того, как он попадает к специфическим реактивным лимфоцитам.

3. Согласно большинству новых исследований, в деле возникновения толерантности весьма важной является стимуляция ингибирующих (супрес-сорных) клеток Т.

Гибридизация . По данным новейших исследований, совместным выращиванием двух видов лимфоцитов, способных к различным иммунным ответам, в тканевой культуре можно получить моноклональные (образующие один вид антител) клетки. Это открывает новую возможность пассивной защиты, и в будущем можно будет получать человеческие антитела в больших количествах.

Химическая структура молекулы иммуноглобулина известна по исследованиям Эдельмана. Уже раньше было выяснено, что молекула иммуноглобулина путем расщепления дисульфидных мостов может быть расщеплена на две цепи Н (heavy - тяжелая) и две цепи L (light - легкая). Папаиновым перевариванием молекула может быть фрагментирована и иначе: тогда отщепляются две части, называемые Fab, и одна часть, называемая Fc.

Фрагмент Fab . Он образует место связывания специфического антигена. Фрагмент содержит полную цепь L и часть цепи Н. Наружной (аминотерминальной) частью или отрезком N двух цепей является вариабельная - V - область. Она содержит 111 аминокислот, специфическое связывание которых обуславливается меняющейся по отдельным антителам очередностью, стерео конфигурацией. Очередность аминокислот (секвентность) другой части независима от способности к реакции со специфическим антигеном: это отрезок С (константный). Последний индивидуально различен, и, таким образом, по качеству ИгГ описано много вариантов.

Молекулярный вес цепей L:20000 . С точки зрения антигенности имеется два вида легких цепей: каппа и ламбда (но в одной молекуле имеется только один вид).

Фрагмент Fc . Он представляет часть цепи Н. Сам по себе не связывается к антигену, а в случае физико-химической реакции между Fab и антигеном индуцирует цепь биологических реакций.

Классификация иммуноглобулинов возможна на основании различной антигенности цепей Н; в настоящее время различаются пять видов иммуноглобулинов. Цепь L в каждом случае может быть двоякой: каппа и ламбда.



Понравилась статья? Поделитесь ей