Контакты

Какие жирные кислоты обладают большей подвижностью. Типы ненасыщенных жирных кислот. Чем отличаются насыщенные жиры от ненасыщенных

Ненасыщенные жирные кислоты (ЖК) – это одноосновные жирные кислоты, в структуре которых присутствуют одна (мононенасыщенная) или две и более (полиненасыщенные жирные кислоты, сокращенно ) двойных связей между соседними атомами углерода. Синоним – непредельные жирные кислоты . Триглицериды, состоящие из таких жирных кислот, называют, соответственно, ненасыщенными жирами.

Биологическая роль ненасыщенных жиров гораздо более многообразна, чем насыщенных.

Большая часть этих молекул используется организмом как источник энергии, однако это далеко не самая важная их функция.

Наибольшее биологическое значение из ненасыщенных жирных кислот имеют полиненасыщенные жирные кислоты, а именно так называемые (витамин F). Это в первую очередь линолевая (омега-6 полиненасыщенная ЖК) и линоленовая (омега-3 ПНЖК); также выделяют омега-9 кислоты, к которым относится, например, олеиновая – мононенасыщенная жирная кислота. Омега-три и омега-шесть ненасыщенные жирные кислоты являются эссенциальным (т.е. жизненно необходимым) компонентом пищевых продуктов, который наш организм не может синтезировать сам.

Основное биологическое значение жирных кислот omega-3 и omega-6 (витамина F) заключается в их участии в синтезе эйкозаноидов, являющихся предшественниками простагландинов и лейкотриенов, которые в свою очередь препятствуют развитию атеросклероза, обладают кардиопротекторным и антиаритмическим действием, регулируют воспалительные процессы в организме, снижают уровень холестерина и пр. Эти вещества защищают организм человека от сердечно-сосудистых заболеваний, главного фактора смертности современного человека.

Мононенасыщенные жирные кислоты также обладают полезными свойствами.

Так, их назначают при лечении некоторых заболеваний нервной системы, дисфункции надпочечников; олеиновая кислота (мононенасыщенная) ответственна за гипотензивный эффект : оно снижает артериальное давление. Мононенасыщенные жирные кислоты также поддерживают необходимую подвижность клеточных мембран, что облегчает прохождение в клетку полиненасыщенных жирных кислот.

Непредельные жирные кислоты встречаются во всех жирах. В растительных жирах их содержание, как правило, больше, чем в животных (хотя и в растительных и в животных жирах бывают исключения из этого правила: твердое пальмовое масло и жидкий рыбий жир, например). Основными источниками ненасыщенных ЖК и особенно незаменимых, или эссенциальных, для человека являются оливковое, подсолнечное, кунжутное, рапсовое масло, жиры рыб и морских млекопитающих.

Источниками омега-3 и омега-6 жирных кислот являются, прежде всего, рыба и морепродукты: лосось, макрель, сельдь, сардины, форель, тунец, моллюски и др., а также ряд растительных масел: льняное, конопляное, соевое, рапсовое масла, масло из тыквенных семечек, грецкого ореха и пр.

Нормы потребления для ненасыщенных жирных кислот не установлены, однако считается, что их энергетическая ценность в рационе в норме должна составлять около 10%. Следует отметить, что мононенасыщенные жирные кислоты могут быть синтезированы в организме из насыщенных ЖК и углеводов. Поэтому они не относятся к незаменимым или эссенциальным жирным кислотам.

Одним из важнейших свойств ненасыщенных жиров является их способность к перекисному окислению – в этом случае окисление идет по двойной связи непредельных ЖК. Это необходимо для регуляции обновления клеточных мембран и их проницаемости, а также синтеза простагландинов – регуляторов иммунной защиты, лейкотриенов и др. биологически активных веществ.

Другой стороной способности этих соединений к окислению является то, что как сами масла, так и изделия, приготовленные с их использованием, прогоркают при длительном хранении, что хорошо ощущается на вкус. Поэтому для увеличения сроков хранения в кондитерской промышленности, к сожалению, часто происходит замена таких масел на масла с низким содержанием непредельных ЖК. Особенно опасной тенденцией является использование гидрогенизированных жиров (), содержащих вредные трансизомеры жирных кислот (транс-жиры), которые намного дешевле натуральных, но и столь же намного увеличивают риск сердечно-сосудистых заболеваний.

По сравнению с насыщенными жирными кислотами, закономерность в отношении температуры плавления у ненасыщенных (непредельных) обратная – чем больше жир содержит ненасыщенных ЖК, тем меньше у него температура плавления. Таким образом, если перед вами масло, которое остается жидким даже в холодильнике, при температуре 2-8°С, можете не сомневаться, что в нем преобладают непредельные жиры.

Жиры и холестерин – понятия, тесно взаимосвязанные, и чаще всего люди боятся, что уровень холестерина в их организме повысится, так как наслышаны о его негативных свойствах и вреде для здоровья. На самом же деле стоит опасаться лишь повышенного содержания холестерина, который считается "плохим", то есть, ЛПНП (липопротеидов высокой плотности).



Какие жиры полезны для организма, в чем вред транс-жиров и в каких пищевых продуктах содержатся эти вещества – об этом и многом другом вы узнаете из этой статьи.

Чем отличаются насыщенные жиры от ненасыщенных

Жиры, или липиды, являются важнейшим источником энергии, входят в состав структурных компонентов клетки, предохраняют организм от теплопотерь, органы - от повреждений. Пищевые продукты содержат жиры животного и растительного происхождения, и все липиды состоят из глицерола и жирных кислот, среди которых различают насыщенные и ненасыщенные. Вред и польза жира – вопрос не праздный, поэтому стоит рассмотреть его более детально.

Чем отличаются насыщенные жиры от ненасыщенных и где они содержатся? Насыщенные жирные кислоты образуют твердые («плохие») жиры, ненасыщенные жирные кислоты - мягкие («хорошие») жиры. В животных жирах преобладают насыщенные жиры, в растительных (кроме кокосового и пальмового масел) - ненасыщенные жиры. Таким образом, ответ на вопрос «какие жиры полезны - насыщенные или ненасыщенные» очевиден: полезны исключительно ненасыщенные жирные кислоты. Насыщенные жирные кислоты в лучшем случае нейтральны для организма, в худшем – вредны.

Большая часть жиров, потребляемых человеком, - это триглицериды (95-98%), состоящие из одной молекулы глицерола и трех остатков жирных кислот. Одна жирная кислота состоит из более или менее длинной цепи атомов углерода (С), с которым соединены атомы водорода (Н). Атомы углерода могут быть соединены между собой одинарными или двойными связями.

Не имеющая двойных связей, называется насыщенной, имеющая одну двойную связь - мононенасыщенной, несколько двойных связей - полиненасыщенной.

Последние не синтезируются в организме - это эссенциальные (незаменимые) жирные кислоты (их называют витамином F).

Существует общий принцип: ненасыщенные жиры - это жиры растительного происхождения, а насыщенные жиры - животные жиры. Но, как известно, из любого правила есть исключения. Например, свиней специально откармливают для получения твердого (насыщенного) жира. При холодной погоде свиньи очень сильно замерзают, фактически «окоченевают». В противоположность им рыбы, также имеющие животный жир, способны жить в очень холодной, даже арктической температуры, воде. Рыбий жир является ненасыщенным и сохраняет жидкое состояние при минусовой температуре, по этой причине рыбы сохраняют подвижность, гибкость, проворность. Насыщенные и ненасыщенные жиры организму необходимы, но перевес должен быть в пользу ненасыщенных.

Какие жиры животного и растительного происхождения полезны для организма

Говоря о том, какие жиры полезны, не стоит забывать, что растительные жиры тоже имеют свои особенности. Как правило, растительные жиры содержатся в семенах и являются ненасыщенными (масла оливковое, подсолнечное, льняное, облепиховое, ореховое, масло виноградной косточки, кукурузное). Исключения составляют некоторые фрукты тропических и субтропических регионов, имеющие жиры с высокой точкой плавления, т. е. эти жиры, остаются в твердом состоянии даже в тропической жаре. Кокосовое и пальмовое масла обладают самым твердым насыщенным растительным жиром в мире.

Твердость и насыщенность жира неразделимы: насыщенные жиры даже при комнатной температуре остаются в твердом состоянии, а ненасыщенные сохраняют жидкое состояние при температуре ниже нуля.

В рационе человека должно быть от 80 до 100 г жиров в сутки (1,2-1,3 на 1 кг массы тела), в том числе 30-35 г растительного масла, содержащего полиненасыщенные жирные кислоты. Выбирая между растительными и животными жирами, старайтесь отдавать предпочтение первым.

В каких продуктах содержатся полезные жиры

В каких же продуктах содержатся полезные жиры, а в каких – вредные?

Важные источники ненасыщенных жирных кислот: рыба (скумбрия, сардины, тунец, семга, форель, сельдь, печень трески), растительные масла. Основные источники насыщенных жирных кислот: продукты животного происхождения (мясо, колбасные изделия, потроха, кожа птицы, сливочное масло, сметана, цельное молоко, животные жиры), некоторые растительные продукты (кокосовое и пальмовое масла, маргарин, фритюрное масло).

В отчете Американской ассоциации кардиологов (1961), который справедливо считается «документом мировой важности», сказано, что «сокращение количества потребляемых жиров с разумной заменой насыщенных жиров полиненасыщенными рекомендуется как возможное средство предупреждения атеросклероза и снижения опасности возникновения инфаркта миокарда и инсульта». В этой связи необходимо особенно тщательно выбирать . Очень важно соотношение белка и жира в различных продуктах.

Таблица «Содержание холестерина в продуктах»

Ниже представлена таблица «Содержание холестерина в продуктах», в которой указано количество холестерина в миллиграммах на 100 г продукта.

Продукт

Овощи, фрукты (все)

Рыба (большинство сортов)

Мясо и мясные продукты

Телятина

Говядина

Конина, баранина

Крольчатина

Печень телячья

Печень говяжья

Утиное мясо

Колбасы (разные)

Цельное яйцо

Яичный желток

Молоко и молочные продукты

Цельное молоко

Творог обезжиренный

Творог жирный

Высококалорийная диета, богатая насыщенными жирами, является причиной высокого содержания «плохого» холестерина в крови. Диета, содержащая большое количество ненасыщенных жиров, приводит к снижению уровня «плохого» холестерина в крови и повышению «хорошего» холестерина.

Ежедневно взрослый человек потребляет около 750 мг холестерина. В сутки в печени образуется около 1 г холестерина. В зависимости от характера пищи это количество может варьировать: увеличение количества холестерина в пище приводит к повышению его уровня в крови, уменьшение - соответственно к снижению. Так, уменьшение содержания холестерина в продуктах до 350-375 мг/сут. приводит к снижению его уровня в крови на 7 мг/дл. Увеличение содержания холестерина до 1500 мг приводит к его увеличению на 10 мг/дл крови. В этой связи необходимо знать содержание холестерина в основных продуктах питания.

Что такое транс-жиры и их вред для организма

В этом разделе статьи вы узнаете, что такое транс-жиры и в чем их опасность для организма человека. Ненасыщенные жиры при промышленной или кулинарной обработке принимают форму «транс», превращаясь при нагревании и гидрогенизации в насыщенные твердые жиры, например маргарин, кулинарный жир, спред. Транс-жиры широко используются в промышленности, так как позволяют резко увеличить срок хранения продуктов. Полученные во Франции результаты исследований, в которых участвовали 17 тыс. человек, выявили, что потребление жирных кислот формы «транс» само по себе увеличивает на 50% риск возникновения инфаркта миокарда даже при отсутствии других важных факторов риска (табако-курение, потребление жиров, насыщенных жирных кислот, гиподинамии и т. д.).

Какие продукты содержат транс-жиры? Это майонезы, кетчупы, готовые соусы, рафинированное растительное масло, сухие концентраты (супы, соусы, десерты, кремы), мягкие масла, спреды, миксы растительного и сливочного масла, чипсы, попкорн с добавлением жира, диацетила и других ароматизаторов, продукция фастфуда (картофель фри, хот-доги, сэндвичи, гамбургеры), замороженные мясные, рыбные и прочие полуфабрикаты в панировке (например, котлеты, рыбные палочки), кондитерские изделия (торты, пирожные, пончики, вафли, печенье, крекеры, конфеты).

Откажитесь от продуктов, содержащих транс-жиры. Всегда читайте на этикетке состав продукта, присутствуют ли там гидрированные или частично гидрированные жиры. Под этим следует понимать транс-жиры.

В питании человека жиры абсолютно необходимы, однако насыщенные жиры, транс-жиры и избыток холестерина в еде опасны для сердца и сосудов, ненасыщенные жиры способны предотвратить сердечно-сосудистые заболевания.



Еще больше по теме






Атомов в молекулах соединений разомкнуты, линейны. Основа – . Количество его атомов в жирных всегда четное.

Считая углерод в карбоксилах, его частиц может быть от 4-ех до 24-ех. Однако, жирных не 20, а более 200-от. Такое разнообразие связано с дополнительными составными молекул, это и , а так же, разностью в строении. Есть , совпадающие по составу и количеству атомов, но разнящиеся по их расположению. Такие соединения именуют изомерами.

Как и все жиры, свободные жирные кислоты легче воды и не растворяются в ней. Зато, вещества класса диссоциируют в хлороформе, диэтиловом эфире, и ацетоне. Все это органические растворители. Вода же относится к неорганическим.

К таковым жирные не восприимчивы. Поэтому во время варки супа жиры собираются на его поверхности и замерзают в корку на поверхности блюда, будучи в холодильнике.

Кстати, у жиров нет температуры кипения. В супе кипит лишь вода. в жирах остаются в привычном состоянии. Меняет его нагрев до 250-ти градусов.

Но, и при нем соединения не закипают, а разрушаются. Распад глицерина дает альдегид акролеин. Он известен, так же, как пропеналь. У вещества резкий запах, к тому же, акролеин раздражает слизистые.

У каждой жирной в отдельности температура кипения установлена. Олеиновое соединение, к примеру, закипает при 223-ех градусах. При этом, температура плавления вещества на 209 отметок по шкале Цельсия ниже. Это указывает на не насыщенность . Это значит, что в ней присутствуют двойные связи. Они делают молекулу подвижной.

Насыщенные жирные кислоты имеют лишь одинарные связи. Они упрочняют молекулы, поэтому соединения остаются при комнатной температуре и ниже нее. Впрочем, о видах жирных поговорим в отдельной главе.

Виды жирных кислот

Наличие лишь одинарных связей в молекулах насыщенных жирных вызвано укомплектованностью каждой связи атомами водорода. Они делают строение молекул плотным.

Сила химических связей насыщенных соединений позволяет им сохраняться нетронутыми даже при кипячении. Соответственно, в готовке вещества класса сохраняют пользу, хоть в рагу, хоть в супе.

Ненасыщенные жирные кислоты с двойными связями делятся по их числу. Минимум – одна сцепка меж атомами углерода. Две его частицы дважды связаны друг с другом. Соответственно, в молекуле не хватает двух атомов водорода. Такие соединения именуются мононенасыщенными жирными .

Если двойных связей в молекуле две и больше, это указание на полиненасыщенные жирные кислоты . В них не хватает минимум четырех атомов водорода. Подвижные углеродные связи делают вещества класса неустойчивыми.

Легко проходит окисление жирных кислот . Портятся соединения и на свету, и при термической обработке. Кстати, внешне все полиненасыщенные жирные кислоты – маслянистые жидкости. Их плотность, как правило, чуть меньше, чем у воды. Показатель последней приближен к одному грамму на кубический сантиметр.

В точках двойных связей полиненасыщенных кислот есть завитки. Этакие пружины в молекулах не позволяют атомам сбиваться в «толпы». Поэтому, вещества группы остаются жидкими даже в морозы.

Мононенасыщенные при минусовых температурах затвердевают. Пробовали ставить оливковое масло в холодильник? Жидкость затвердевает, поскольку содержит олеиновую .

Ненасыщенные соединения принято называть омега жирные кислоты . Буква латинского алфавита в названии указывает на расположение двойной связи в молекуле. Отсюда омега —3 жирные кислоты , омега-6 и омега-9. Получается, в первых двойные связи «стартуют» от 3-го атома углерода, во вторых от 6-го, а в 3-их от 9-го.

Ученые классифицируют жирные не только по наличию или отсутствию двойных связей, но и по длине атомных цепей. В короткоцепочечных соединениях от 4-ех до 6-ти частиц углерода.

Такое строение свойственно исключительно насыщенным жирным кислотам. Синтез их в организме возможен, но львиная доля поступает с пищей, в частности, с молочными продуктами.

За счет короткоцепочечных соединений они обладают противомикробным действием, защищая кишечник и пищевод от патогенных микроорганизмов. Так что, молоко не только для костей да зубов полезно.

В среднецепочечных жирных от 8-ми до 12-ти атомов углерода. Их сцепки, так же, встречаются в молочных продуктах. Однако, помимо них среднецепочечные кислоты встречаются и в маслах тропических фруктов, к примеру, авокадо. Помните, насколько жирен сей фрукт? Масла в авокадо занимают не меньше 20% от массы плода.

Как и короткоцепочечные средние по длине молекулы кислоты обладают обеззараживающим действием. Поэтому мякоть авокадо добавляют в маски для жирной . Соки фрукта решают проблему акне и прочих высыпаний.

Третья группа жирных кислот по протяженности молекул – длинноцепочечные. В них атомов углерода от 14-ти до 18-ти. При таком составе можно быть и насыщенными, и мононенасыщенными, и полиненасыщенными.

Не каждый человеческий организм способен синтезировать подобные цепи. Примерно 60% населения планеты «изготавливают» удлиненноцепочечные кислоты из прочих. Предки остальных людей питались, в основном, мясом и .

Животная диета снизила выработку ряда ферментов, нужных для самостоятельного производства удлиненноцепочечных жирных соединений. Меж тем, к ним относятся необходимые для жизнедеятельности, к примеру, арахидоновая . Она участвует в строительстве мембран клеток, помогает передавать нервные импульсы, стимулирует мыслительную деятельность.

Жирные кислоты, не вырабатываемые организмом человека, именуют незаменимыми. К таковым относятся, к примеру, все соединения группы омега-3 и большинство веществ категории омега-6.

Омега-9 вырабатывать и не нужно. Соединения группы относятся к несущественным. Организм в таких кислотах не нуждается, но может воспользоваться ими в качестве замены более вредных соединений.

Так, высшие жирные кислоты омега-9 становятся альтернативой насыщенным жирам. Последние приводят к повышению уровня вредного холестерина. С омега-9 в рационе холестерин держится в норме.

Применение жирных кислот

Омега жирные кислоты в капсулах продаются для добавки в пищу, косметику. Соответственно, вещества нужны телу, как внутренним органам, так и волосам, коже, ногтям. Вопрос роли жирных в организме затрагивался вскользь. Раскроем тему.

Итак, жирные ненасыщенной группы служат онкопротекторами. Так именуют соединения, тормозящие разрастание опухолей и, вообще, их образование. Доказано, что постоянная норма в организме омега-3 сводит к минимуму вероятность простаты у мужчин и онкологии молочных желез у женщин.

К тому же, жирные с двойными связями регулируют менструальный цикл. Его хронические сбои – повод проверить уровень омега-3,6 в крови, включить их в рацион.

Липидный барьер кожи – это коллектив жирных . Здесь и ненасыщенная линоленовая, и олеиновая и арахидоновая. Пленка из них блокирует испарение влаги. В итоге, покровы остаются упругими, гладкими.

Преждевременное старение кожи часто связано с нарушением, истончением липидного барьера. Соответственно, сухая кожа – сигнал недостатка в организме жирных кислот. В кале можно проверить уровень необходимых соединений. Достаточно сдать расширенный анализ копрограммы.

Без липидной пленки сушатся, ломаются, слоятся волосы и ногти. Не удивительно, что ненасыщенные жирные широко применяются косметологами и фармацевтами.

Акцент на ненасыщенные кислоты вызван их пользой для организма, внешности. Однако, это не значит, что насыщенные соединения несут лишь . Для расщепления веществ только с одинарными связями не нужны ферменты надпочечников.

Насыщенные организм усваивает максимально просто и быстро. Значит, вещества служат энергетическим ресурсом, навроде глюкозы. Главное, не переборщить с потреблением насыщенных . Избыток тут же откладывается в подкожную жировую клетчатку. Люди считают насыщенные кислоты вредными, поскольку часто не знают меры.

В промышленности пригождаются не столько свободные жирные кислоты , сколько их соединения. Пользуются, в основном, их пластичными свойствами. Так, соли жирных кислот используют для улучшения смазывающих способностей нефтепродуктов. Обволакивание ими деталей важно, к примеру, в карбюраторных двигателях.

История познания жирных кислот

В 21-ом веке на жирные кислоты цена , как правило, кусается. Шумиха о пользе омега-3 и омега-6 заставила потребителей выкладывать тысячи за баночки с бадами, в которых всего по 20-30 таблеток. Меж тем, еще 75 лет назад о жирных и слуха не было. Своей славе героини статьи обязаны Джиму Дайербергу.

Это химик из Дании. Профессор заинтересовался, почему эскимосы не относятся к так называемым сердечникам. У Дайерберга возникла гипотеза, что причина в питании северян. В их рационе преобладали жиры, что нетипично для диеты южан.

Начали изучать состав крови эскимосов. Нашли в ней обилие жирных кислот, в частности, эйкозапентаэновая и докосаксеноевая. Джим Дайерберг ввел названия омега-3 и омега-6, однако, не подготовил достаточную доказательную базу их влияния на организм, в том числе здоровье .

Это сделали уже в 70-ых годах. К тому времени изучили, так же, состав крови жителей Японии и Нидерландов. Обширные исследования позволили понять механизм действия жирных в организме и их важность. В частности, героини статьи участвуют в синтезе простагландинов.

Это ферменты. Они способны расширить и сузить бронхи, регулировать сокращения мышц и секрецию желудочного . Только вот, разобраться каких в теле в избытке, а каких недостает, сложно.

Еще не придуман фитнес-, «читающий» все показатели организма, да и более громоздкая установка. Остается лишь гадать и внимательно относиться к проявлениям своего тела, питанию.

(только с одинарными связями между атомами углерода), мононенасыщенными (с одной двойной связью между атомами углерода) и полиненасыщенными (с двумя и более двойными связями, находящимися, как правило, через CH 2 -группу). Они различаются по количеству углеродных атомов в цепи, а также, в случае ненасыщенных кислот, по положению, конфигурации (как правило цис-) и количеству двойных связей. Жирные кислоты можно условно поделить на низшие (до семи атомов углерода), средние (восемь - двенадцать атомов углерода) и высшие (более двенадцати атомов углерода). Исходя из исторического названия данные вещества должны быть компонентами жиров. На сегодня это не так; термин «жирные кислоты» подразумевает под собой более широкую группу веществ.

Карбоновые кислоты начиная с масляной кислоты (С 4) считаются жирными, в то время как жирные кислоты, полученные непосредственно из животных жиров, имеют в основном восемь и больше атомов углерода (каприловая кислота). Число атомов углерода в натуральных жирных кислотах в основном чётное, что обусловлено их биосинтезом с участием ацетил-кофермента А .

Большая группа жирных кислот (более 400 различных структур, хотя только 10-12 распространены) находятся в растительных маслах семян. Наблюдается высокое процентное содержание редких жирных кислот в семенах определённых семейств растений.

R-COOH + КоА-SH + АТФ → R-CO-S-КоА + 2P i + H + + АМФ

Синтез

Циркуляция

Пищеварение и всасывание

Коротко- и среднецепочечные жирные кислоты всасываются напрямую в кровь через капилляры кишечного тракта и проходят через воротную вену , как и другие питательные вещества. Более длинноцепочечные слишком велики, чтобы проникнуть напрямую через маленькие капилляры кишечника. Вместо этого они поглощаются жирными стенками ворсинок кишечника и заново синтезируются в триглицериды . Триглицериды покрываются холестерином и белками с образованием хиломикрона . Внутри ворсинки хиломикрон попадает в лимфатические сосуды , так называемый млечный капилляр, где поглощается большими лимфатическими сосудами. Он транспортируется по лимфатической системе вплоть до места, близкого к сердцу, где кровеносные артерии и вены наибольшие. Грудной канал освобождает хиломикрон в кровоток посредством подключичной вены. Таким образом триглицериды транспортируются в места, где в них нуждаются.

Виды существования в организме

Жирные кислоты существуют в различных формах на различных стадиях циркуляции в крови. Они поглощаются в кишечнике, образуя хиломикроны, но в то же время они существуют в виде липопротеинов очень низкой плотности или липопротеинов низкой плотности после превращений в печени. При выделении из адипоцитов жирные кислоты поступают в свободном виде в кровь.

Кислотность

Кислоты с коротким углеводородным хвостом, такие как муравьиная и уксусная кислоты, полностью смешиваются с водой и диссоциируют с образованием достаточно кислых растворов (pK a 3.77 и 4.76, соответственно). Жирные кислоты с более длинным хвостом незначительно отличаются по кислотности. Например, нонановая кислота имеет pK a 4.96. Однако с увеличением длины хвоста растворимость жирных кислот в воде уменьшается очень быстро, в результате чего эти кислоты мало изменяют раствора. Значение величин pK a для данных кислот приобретает значение лишь в реакциях, в которые эти кислоты способны вступить. Кислоты, нерастворимые в воде, могут быть растворены в тёплом этаноле , и оттитрованы раствором гидроксида натрия , используя фенолфталеин , в качестве индикатора до бледнорозового цвета. Такой анализ позволяет определить содержание жирных кислот в порции триглицеридов после гидролиза .

Реакции жирных кислот

Жирные кислоты реагируют так же, как и другие карбоновые кислоты , что подразумевает этерификацию и кислотные реакции. Восстановление жирных кислот приводит к жирным спиртам . Ненасыщенные жирные кислоты также могут вступать в реакции присоединения ; наиболее характерно гидрирование , которое используется для превращения растительных жиров в маргарин . В результате частичного гидрирования ненасыщенных жирных кислот цис-изомеры, характерные для природных жиров, могут перейти в транс-форму. В реакции Варрентраппа ненасыщенные жиры могут быть расщеплены в расплавленной щёлочи. Эта реакция имеет значение для определения структуры ненасыщенных жирных кислот.

Автоокисление и прогоркание

Жирные кислоты при комнатной температуре подвергаются автоокислению и прогорканию . При этом они разлагаются на углеводороды , кетоны , альдегиды и небольшое количество эпоксидов и спиртов . Тяжёлые металлы , содержащиеся в небольших количествах в жирах и маслах, ускоряют автоокисление. Чтобы избежать этого, жиры и масла часто обрабатываются хелатирующими агентами , такими как лимонная кислота .

Применение

Натриевые и калиевые соли высших жирных кислот являются эффективными ПАВ и используются в качестве мыл . В пищевой промышленности жирные кислоты зарегистрированы в качестве пищевой добавки E570 , как стабилизатор пены, глазирователь и пеногаситель.

Разветвлённые жирные кислоты

Разветвлённые карбоновые кислоты липидов обычно не относятся к собственно жирным кислотам, но рассматриваются как их метилированные производные. Метилированные по предпоследнему атому углерода (изо -жирные кислоты) и по третьему от конца цепи (антеизо -жирные кислоты) входят в качестве минорных компонент в состав липидов бактерий и животных.

Разветвленные карбоновые кислоты также входят в состав эфирных масел некоторых растений: так, например, в эфирном масле валерианы содержится изовалериановая кислота:

Основные жирные кислоты

Насыщенные жирные кислоты

Общая формула: C n H 2n+1 COOH или CH 3 -(CH 2) n -COOH

Тривиальное название Брутто формула Нахождение Т.пл. pKa
Масляная кислота Бутановая кислота C 3 H 7 COOH CH 3 (CH 2) 2 COOH Сливочное масло, древесный уксус −8 °C
Капроновая кислота Гексановая кислота C 5 H 11 COOH CH 3 (CH 2) 4 COOH Нефть −4 °C 4,85
Каприловая кислота Октановая кислота C 7 H 15 COOH CH 3 (CH 2) 6 COOH 17 °C 4,89
Пеларгоновая кислота Нонановая кислота C 8 H 17 COOH CH 3 (CH 2) 7 COOH 12,5 °C 4.96
Каприновая кислота Декановая кислота C 9 H 19 COOH CH 3 (CH 2) 8 COOH Кокосовое масло 31 °C
Лауриновая кислота Додекановая кислота С 11 Н 23 СООН CH 3 (CH 2) 10 COOH 43,2 °C
Миристиновая кислота Тетрадекановая кислота С 13 Н 27 СООН CH 3 (CH 2) 12 COOH 53,9 °C
Пальмитиновая кислота Гексадекановая кислота С 15 Н 31 СООН CH 3 (CH 2) 14 COOH 62,8 °C
Маргариновая кислота Гептадекановая кислота С 16 Н 33 СООН CH 3 (CH 2) 15 COOH 61,3 °C
Стеариновая кислота Октадекановая кислота С 17 Н 35 СООН CH 3 (CH 2) 16 COOH 69,6 °C
Арахиновая кислота Эйкозановая кислота С 19 Н 39 СООН CH 3 (CH 2) 18 COOH 75,4 °C
Бегеновая кислота Докозановая кислота С 21 Н 43 СООН CH 3 (CH 2) 20 COOH
Лигноцериновая кислота Тетракозановая кислота С 23 Н 47 СООН CH 3 (CH 2) 22 COOH
Церотиновая кислота Гексакозановая кислота С 25 Н 51 СООН CH 3 (CH 2) 24 COOH
Монтановая кислота Октакозановая кислота С 27 Н 55 СООН CH 3 (CH 2) 26 COOH

Мононенасыщенные жирные кислоты

Общая формула: СН 3 -(СН 2) m -CH=CH-(CH 2) n -COOH (m = ω -2; n = Δ -2)

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Акриловая кислота 2-пропеновая кислота С 2 Н 3 COOH 3:1ω1 3:1Δ2 СН 2 =СН-СООН
Метакриловая кислота 2-метил-2-пропеновая кислота С 3 Н 5 OOH 4:1ω1 3:1Δ2 СН 2 =С(СН 3)-СООН
Кротоновая кислота 2-бутеновая кислота С 3 Н 5 СOOH 4:1ω2 4:1Δ2 СН 2 -СН=СН-СООН
Винилуксусная кислота 3-бутеновая кислота С 3 Н 6 СOOH 4:1ω1 4:1Δ3 СН 2 =СН-СН 2 -СООН
Лауроолеиновая кислота цис-9-додеценовая кислота С 11 Н 21 СOOH 12:1ω3 12:1Δ9 СН 3 -СН 2 -СН=СН-(СН 2) 7 -СООН
Миристоолеиновая кислота цис-9-тетрадеценовая кислота С 13 Н 25 СOOH 14:1ω5 14:1Δ9 СН 3 -(СН 2) 3 -СН=СН-(СН 2) 7 -СООН
Пальмитолеиновая кислота цис-9-гексадеценовая кислота С 15 Н 29 СOOH 16:1ω7 16:1Δ9 СН 3 -(СН 2) 5 -СН=СН-(СН 2) 7 -СООН
Петроселиновая кислота цис-6-октадеценовая кислота С 17 Н 33 СOOH 18:1ω12 18:1Δ6 СН 3 -(СН 2) 16 -СН=СН-(СН 2) 4 -СООН
Олеиновая кислота цис-9-октадеценовая кислота С 17 Н 33 СOOH 18:1ω9 18:1Δ9
Элаидиновая кислота транс-9-октадеценовая кислота С 17 Н 33 СOOH 18:1ω9 18:1Δ9 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН
Цис-вакценовая кислота цис-11-октадеценовая кислота С 17 Н 33 СOOH 18:1ω7 18:1Δ11
Транс-вакценовая кислота транс-11-октадеценовая кислота С 17 Н 33 СOOH 18:1ω7 18:1Δ11 СН 3 -(СН 2) 5 -СН=СН-(СН 2) 9 -СООН
Гадолеиновая кислота цис-9-эйкозеновая кислота С 19 Н 37 СOOH 20:1ω11 19:1Δ9 СН 3 -(СН 2) 9 -СН=СН-(СН 2) 7 -СООН
Гондоиновая кислота цис-11-эйкозеновая кислота С 19 Н 37 СOOH 20:1ω9 20:1Δ11 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 9 -СООН
Эруковая кислота цис-9-доказеновая кислота С 21 Н 41 СOOH 22:1ω13 22:1Δ9 СН 3 -(СН 2) 11 -СН=СН-(СН 2) 7 -СООН
Нервоновая кислота цис-15-тетракозеновая кислота С 23 Н 45 СOOH 24:1ω9 23:1Δ15 СН 3 -(СН 2) 7 -СН=СН-(СН 2) 13 -СООН

Полиненасыщенные жирные кислоты

Общая формула: СН 3 -(СН 2) m -(CH=CH-(CH 2) х (СН 2)n-COOH

Тривиальное название Систематическое название (IUPAC) Брутто формула IUPAC формула (с метил.конца) IUPAC формула (с карб.конца) Рациональная полуразвернутая формула
Сорбиновая кислота транс,транс-2,4-гексадиеновая кислота С 5 Н 7 COOH 6:2ω3 6:2Δ2,4 СН 3 -СН=СН-СН=СН-СООН
Линолевая кислота цис,цис-9,12-октадекадиеновая кислота С 17 Н 31 COOH 18:2ω6 18:2Δ9,12 СН 3 (СН 2) 3 -(СН 2 -СН=СН) 2 -(СН 2) 7 -СООН
Линоленовая кислота цис,цис,цис-6,9,12-октадекатриеновая кислота С 17 Н 28 COOH 18:3ω6 18:3Δ6,9,12 СН 3 -(СН 2)-(СН 2 -СН=СН) 3 -(СН 2) 6 -СООН
Линоленовая кислота цис,цис,цис-9,12,15-октадекатриеновая кислота С 17 Н 29 COOH 18:3ω3 18:3Δ9,12,15 СН 3 -(СН 2 -СН=СН) 3 -(СН 2) 7 -СООН
Арахидоновая кислота цис-5,8,11,14-эйкозотетраеновая кислота С 19 Н 31 COOH 20:4ω6 20:4Δ5,8,11,14 СН 3 -(СН 2) 4 -(СН=СН-СН 2) 4 -(СН 2) 2 -СООН
Дигомо-γ-линоленовая кислота 8,11,14-эйкозатриеновая кислота С 19 Н 33 COOH 20:3ω6 20:3Δ8,11,14 СН 3 -(СН 2) 4 -(СН=СН-СН 2) 3 -(СН 2) 5 -СООН
- 4,7,10,13,16-докозапентаеновая кислота С 19 Н 29 COOH 20:5ω4 20:5Δ4,7,10,13,16 СН 3 -(СН 2) 2 -(СН=СН-СН 2) 5 -(СН 2)-СООН
Тимнодоновая кислота 5,8,11,14,17-эйкозапентаеновая кислота С 19 Н 29 COOH 20:5ω3 20:5Δ5,8,11,14,17 СН 3 -(СН 2)-(СН=СН-СН 2) 5 -(СН 2) 2 -СООН
Цервоновая кислота 4,7,10,13,16,19-докозагексаеновая кислота С 21 Н 31 COOH 22:6ω3 22:3Δ4,7,10,13,16,19 СН 3 -(СН 2)-(СН=СН-СН 2) 6 -(СН 2)-СООН
- 5,8,11-эйкозатриеновая кислота С 19 Н 33 COOH 20:3ω9 20:3Δ5,8,11 СН 3 -(СН 2) 7 -(СН=СН-СН 2) 3 -(СН 2) 2 -СООН

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Жирные кислоты" в других словарях:

    Одноосновные карбоновые кислоты алифатич. ряда. Осн. структурный компонент мн. липидов (нейтральных жиров, фосфоглицеридов, восков и др.). Свободные Ж. к. присутствуют в организмах в следовых кол вах. В живой природе преим. встречаются высшие Ж.… … Биологический энциклопедический словарь

    жирные кислоты - Высокомолекулярные карбоновые кислоты, входящие в состав растительных масел, животных жиров и сопутствующих им веществ. Примечание Для гидрогенизации применяют жирные кислоты, выделенные из растительных масел, животных жиров и жировых отходов.… … Справочник технического переводчика

    ЖИРНЫЕ КИСЛОТЫ, органические соединения, составные компоненты ЖИРОВ (отсюда название). По составу они являются карбоксильными кислотами, содержащими одну карбоксильную группу (СООН). Примерами насыщенных жировых кислот (в углеводородной цепи… … Научно-технический энциклопедический словарь

Жирные кислоты - карбоновые кислоты; в организме животных и в растениях свободные и входящие в состав липидов жирные кислоты выполняют энергетическую и пластическую функции. Жирные кислоты в составе фосфолипидов участвуют в построении биологических мембран. Так называемые ненасыщенные жирные кислоты в организме человека и животных принимают участие в биосинтезе особой группы биологически активных веществ - простагландинов . Концентрация свободных (неэтерифицированных) и эфирно-связанных, или этерифицированных, жирные кислоты в плазме (сыворотке) крови служит дополнительным диагностическим тестом при ряде заболеваний.

По степени насыщенности углеродной цепи атомами водорода различают насыщенные (предельные) и ненасыщенные (непредельные) жирные кислоты . По числу углеродных атомов в цепи жирных кислот делят на низшие (C 1 -С 3), средние (С 4 -C 8) и высшие (C 9 -С 26). Низшие Ж. к. представляют собой летучие жидкости с резким запахом, средние - масла с неприятным прогорклым запахом, высшие - твердые кристаллические вещества, практически лишенные запаха. Жирные кислоты хорошо растворимы в спирте и эфире. С водой смешиваются во всех соотношениях только муравьиная, уксусная и пропионовая кислоты. Ж. к. , содержащиеся в организме человека и животных, имеют обычно четное число атомов углерода в молекуле.

Соли высших жирных кислот с щелочноземельными металлами обладают свойствами детергентов и называются мылами. Натриевые мыла твердые, калиевые - жидкие. В природе широко распространены сложные эфиры трехатомного спирта глицерина и высших жирных кислот - жиры (нейтральные жиры, или триглицериды).

Энергетическая ценность жирных кислот чрезвычайно высока и составляет около 9 ккал/г . Как энергетический материал в организме жирных кислот используются в процессе b -окисления. Этот процесс в общих чертах складывается из активации свободной Ж. к. , в результате чего образуется метаболически активная форма этой Ж. к. (ацил-КоА), затем переноса активированной Ж. к. внутрь митохондрий, и самого окисления, катализируемого специфическими дегидрогеназами. В переносе активированной Ж. к. в митохондрий участвует азотистое основание карнитин. Энергетическая эффективность b -окисления жирных кислот иллюстрируется следующим примером. В результате b -окисления одной молекулы пальмитиновой кислоты с учетом одной молекулы АТФ, потраченной на активацию этой Ж. к. , общий энергетический выход при полном окислении пальмитиновой кислоты в условиях организма составляет 130 молекул АТФ (при полном окислении одной молекулы глюкозы образуется лишь 38 молекул АТФ).

Небольшое количество жирных кислот подвергается в организме так называемому w -окислению (окислению по СН 3 -группе) и a -окислению (окислению по второму С-атому). В первом случае образуется дикарбоновая кислота, во втором - Ж. к. , укороченная на один углеродный атом. Оба вида такого окисления протекают в микросомах клетки.

Синтез жирных кислот происходит в печени, а также в стенке кишечника, легочной, жировой ткани, костном мозге, лактирующей молочной железе и в сосудистой стенке. В цитоплазме клеток печени синтезируется главным образом пальмитиновая кислота С 15 Н 31 СООН. Основной путь образования в печени других жирных кислот заключается в удлинении углеродной цепи молекулы уже синтезированной пальмитиновой кислоты или жирные кислоты пищевого происхождения, поступивших из кишечника.

Биосинтез жирных кислот в животных тканях регулируется по принципу механизма обратной связи, т.к. само накопление жирных кислот оказывает тормозящее влияние на их биосинтез. Другим регулирующим фактором в синтезе жирных кислот , по-видимому, является содержание цитрата (лимонной кислоты) в цитоплазме клеток печени. Важное значение для синтеза жирных кислот имеет также концентрация в клетке восстановленного никотинамидадениндинуклеотидфосфата (НАДФ-Н). Вместе с тем ткани человека и некоторых животных потеряли способность синтезировать ряд полиненасыщенных кислот. К таким кислотам относятся линолевая, линоленовая и арахидоновая кислоты, которые получили название незаменимых, или эссенциальных, жирных кислот. Иногда их условно называют витамином F.

Линолевая кислота, содержащая в молекуле 18 углеродных атомов и две ненасыщенные связи, синтезируется только растениями. При поступлении в организм млекопитающих она служит предшественником линоленовой кислоты, содержащей в молекуле 18 углеродных атомов и три ненасыщенные связи, и арахидоновой кислоты, в молекуле которой углеродная цепь состоит из 20 углеродных атомов и содержит четыре ненасыщенные связи. Линоленовая и арахидоновая кислоты могут также поступать в организм с пищей. Арахидоновая кислота является непосредственным предшественником простагландинов . У экспериментальных животных недостаточность незаменимых жирных кислот проявляется поражениями кожи и ее придатков. Люди. как правило, не испытывают недостатка в незаменимых жирных кислотах, т.к. эти кислоты в значительных количествах содержатся во многих пищевых продуктах растительного происхождения, рыбе и птице. В мясных продуктах их содержание намного ниже. У детей раннего возраста недостаток незаменимых Ж. к может привести к развитию экземы. Особое место среди полиненасыщенных жирных кислот занимает так называемая тимнодоновая кислота, содержащая в молекуле 20 углеродных атомов и пять ненасыщенных связей. Ею богат жир морских животных. Замедленная свертываемость крови и низкая распространенность ишемической болезни сердца у эскимосов связана с их традиционной диетой, содержащей продукты, богатые тимнодоновой кислотой.

Жирные кислоты входят в состав разнообразных липидов : глицеридов, фосфолипидов, эфиров холестерина , сфинголипидов и восков. Установлено, что если в рацион входит значительное количество жиров, содержащих много насыщенных жирных кислот , это способствует развитию гиперхолестеринемии; включение же в рацион растительных масел, богатых ненасыщенными жирными кислотами , способствует снижению содержания холестерина в крови.

Избыточное окисление ненасыщенных Ж. к по перекисному механизму может играть существенную роль при развитии различных патологических состояний, например при лучевых поражениях, злокачественных новообразованиях, авитаминозе Е, гипероксии, отравлении четыреххлористым углеродом. Один из продуктов перекисного окисления ненасыщенных жирных кислот - липофусцин - накапливается в тканях при старении. Смесь этиловых эфиров олеиновой кислоты (около 15%), линолевой кислоты (около 15%) и линоленовой кислоты (около 57%) входит в состав лекарственного препарата линетола, используемого для профилактики и лечения атеросклероза и наружно - при ожогах и лучевых поражениях кожи.

Степень ненасыщенности жирных кислот определяют йодометрическим титрованием (см. Титриметрический анализ ). В клинике наиболее широко применяются колориметрические методы количественного определения свободных, или неэтерифицированных жирных кислот (НЭЖК); в крови практически все НЭЖК находятся в связанном с альбуминами состоянии. Принцип метода заключается в том, что при нейтральных и слабощелочных значениях рН медные соли жирных кислот экстрагируются из водных растворов неводными растворителями (например, смесью хлороформ - гептан - метанол), а ионы меди остаются в водной фазе. Поэтому количество меди, перешедшее в органическую фазу, соответствует количеству НЭЖК и определяется по цветной реакции с 1,5-дифенилкарбазидом. В норме в плазме крови содержится от 0,4 до 0,8 ммоль/л НЭЖК и от 7,1 до 15,9 ммоль/л этерифицированных жирных кислот . Повышение содержания НЭЖК в крови отмечают при сахарном диабете, нефрозах, голодании, а также при эмоциональном стрессе. Увеличение концентрации НЭЖК в крови может быть обусловлено приемом жирной пищи, факторами, стимулирующими липолиз, - гепарином, адреналином и др. Его отмечают также при атеросклерозе и после инфаркта миокарда. Понижение содержания НЭЖК наблюдается при гипотиреозе, продолжительном лечении глюкокортикоидами, а также после инъекции инсулина. Отмечено, что при увеличении в крови концентрации глюкозы содержание НЭЖК в ней уменьшается.

Библиогр.: Владимиров Ю. А и Арчаков А. И. Перекисное окисление липидов в биологических мембранах, М., 1972; Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова, с. 248, М., 1987.



Понравилась статья? Поделитесь ей