Контакты

Какие могут быть бактерии. Примеры бактерий и их особенности. Одна большая семья

История изучения

Основы общей микробиологии и изучения роли бактерий в природе заложили Бейеринк Мартинус Виллем и Виноградский Сергей Николаевич .

Изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е годы . В 1937 году Э. Чаттон предложил делить все организмы по типу клеточного строения на прокариот и эукариот, и в 1961 году Стейниер и Ван Ниль окончательно оформили это разделение. Развитие молекулярной биологии привело к открытию в 1977 году К. Вёзе коренных различий и среди самих прокариот: между бактериями и археями.

Строение

Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны . По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы , клостридии , псевдомонады), извитыми (вибрионы , спириллы , спирохеты), реже - звёздчатыми, тетраэдрическими , кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы , то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три:

С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка , капсула , слизистый чехол), называемых клеточной оболочкой , а также поверхностные структуры (жгутики , ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт .

Строение протопласта

ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК , белков , продуктов и субстратов метаболических реакций, названа цитозолем . Другая часть цитоплазмы представлена различными структурными элементами.

Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК (бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia ). Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид . ДНК в развёрнутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны , хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).

Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.

Клеточная оболочка и поверхностные структуры

У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.

Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20-80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов , белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1-6 нм, которые делают её проницаемой для ряда молекул.

У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим и заполненное раствором, включающим в себя транспортные белки и ферменты .

С внешней стороны от клеточной стенки может находиться капсула - аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.

Размеры

Размеры бактерий в среднем составляют 0,5-5 мкм . Масса - 4⋅10 −13 г . Escherichia coli , например, имеет размеры 0,3-1 на 1-6 мкм , Staphylococcus aureus - диаметр 0,5-1 мкм , Bacillus subtilis - 0,75 на 2-3 мкм . Крупнейшей из известных бактерий является Thiomargarita namibiensis , достигающая размера в 750 мкм (0,75 мм ). Второй является Epulopiscium fishelsoni , имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus . Achromatium oxaliferum достигает размеров 33 на 100 мкм , Beggiatoa alba - 10 на 50 мкм . Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм . В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм , что соответствует размеру крупных вирусов , например, табачной мозаики , коровьей оспы или гриппа . По теоретическим подсчётам, сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не могут поместиться все необходимые биополимеры и структуры в достаточном количестве.

При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём - пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.

Многоклеточность у бактерий

Многоклеточный организм должен отвечать следующим условиям:

  • его клетки должны быть агрегированы,
  • между клетками должно осуществляться разделение функций,
  • между агрегированными клетками должны устанавливаться устойчивые специфические контакты.

Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов . У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток - микроплазмодесмы . Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты . Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.

Способы передвижения и раздражимость

Многие бактерии подвижны. Имеется несколько принципиально различных типов движения бактерий. Наиболее распространено движение при помощи жгутиков: одиночных бактерий и бактериальных ассоциаций (роение). Частным случаем этого также является движение спирохет , которые извиваются благодаря аксиальным нитям, близким по строению к жгутикам , но расположенным в периплазме. Другим типом движения является скольжение бактерий , не имеющих жгутиков, по поверхности твёрдых сред и движение в воде безжгутиковых бактерий рода Synechococcus . Его механизм пока недостаточно изучен; предполагается участие в нём выделения слизи (проталкивание клетки) и находящихся в клеточной стенке фибриллярных нитей, вызывающих «бегущую волну» по поверхности клетки. Наконец, бактерии могут всплывать и погружаться в жидкости, меняя свою плотность, наполняя газами или опустошая аэросомы .

Бактерии активно передвигаются в направлении, определяемом теми или иными раздражителями. Это явление получило название таксис . Различают хемотаксис, аэротаксис, фототаксис и др.

Метаболизм

Конструктивный метаболизм

За исключением некоторых специфических моментов биохимические пути, по которым осуществляется синтез белков , жиров , углеводов и нуклеотидов , у бактерий схожи с таковыми у других организмов. Однако по числу возможных вариантов этих путей и, соответственно, по степени зависимости от поступления органических веществ извне они различаются.

Часть из них может синтезировать все необходимые им органические молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, которые они способны лишь трансформировать (гетеротрофы).

Удовлетворять потребности в азоте бактерии могут как за счёт его органических соединений (подобно гетеротрофным эукариотам), так и за счёт молекулярного азота (как и некоторые археи). Большинство бактерий используют для синтеза аминокислот и других азотсодержащих органических веществ неорганические соединения азота: аммиак (поступающий в клетки в виде ионов аммония), нитриты и нитраты (которые предварительно восстанавливаются до ионов аммония). Фосфор они способны усваивать в виде фосфата , серу - в виде сульфата или реже сульфида .

Энергетический метаболизм

Способы же получения энергии у бактерий отличаются своеобразием. Существует три вида получения энергии (и все три известны у бактерий): брожение, дыхание и фотосинтез.

Бактерии, осуществляющие только бескислородный фотосинтез, не имеют фотосистемы II . Во-первых, это пурпурные и зелёные нитчатые бактерии, у которых функционирует только циклический путь переноса электронов, направленный на создание трансмембранного протонного градиента, за счёт которого синтезируется АТФ (фотофосфорилирование), а также восстанавливается НАД(Ф) + , использующийся для ассимиляции CO 2 . Во-вторых, это зелёные серные и гелиобактерии, имеющие и циклический, и нециклический транспорт электронов, что делает возможным прямое восстановление НАД(Ф) + . В качестве донора электрона, заполняющего «вакансию» в молекуле пигмента в бескислородном фотосинтезе используются восстановленные соединения серы (молекулярная, сероводород, сульфит) или молекулярный водород.

Существуют также бактерии с весьма специфическим энергетическим метаболизмом. Так, в октябре 2008 года в журнале Science появилось сообщение об обнаружении экосистемы, состоящей из представителей одного единственного ранее неизвестного вида бактерии - Desulforudis audaxviator , которые получают энергию для своей жизнедеятельности из химических реакций с участием водорода, образующегося в результате распада молекул воды под воздействием радиации залегающих вблизи нахождения колонии бактерий урановых руд . Некоторые колонии бактерий, обитающие на дне океана, используют для передачи энергии своим собратьям электрический ток .

Типы жизни

Объединить типы конструктивного и энергетического метаболизма можно в следующей таблице:

Способы существования живых организмов (матрица Львова)
Источник энергии Донор электрона Источник углерода Название способа существования Представители
ОВР Неорганические соединения Углекислый газ Хемолитоавтотрофия Нитрифицирующие, тионовые, ацидофильные железобактерии
Органические соединения Хемолитогетеротрофия Метанообразующие архебактерии, водородные бактерии
Органические вещества Углекислый газ Хемоорганоавтотрофия Факультативные метилотрофы , окисляющие муравьиную кислоту бактерии
Органические соединения Хемоорганогетеротрофия Большинство прокариот, из эукариот: животные , грибы , человек
Свет Неорганические соединения Углекислый газ Фотолитоавтотрофия Цианобактерии , пурпурные , зелёные бактерии , из эукариот: растения
Органические соединения Фотолитогетеротрофия Некоторые цианобактерии, пурпурные, зелёные бактерии
Органические вещества Углекислый газ Фотоорганоавтотрофия Некоторые пурпурные бактерии
Органические вещества Фотоорганогетеротрофия Галобактерии, некоторые цианобактерии , пурпурные, зелёные бактерии

Из таблицы видно, что разнообразие типов питания прокариот гораздо больше, чем у эукариот (последние способны лишь к хемоорганогетеротрофии и фотолитоавтотрофии).

Размножение и устройство генетического аппарата

Размножение бактерий

Некоторые бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием . Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Для обеспечения необходимой для эволюции и приспособления к изменчивой окружающей среде пластичности генотипа у них существуют иные механизмы.

Генетический аппарат

Гены, необходимые для жизнедеятельности и определяющие видовую специфичность, расположены у бактерий чаще всего в единственной ковалентно замкнутой молекуле ДНК - хромосоме (иногда для обозначения бактериальных хромосом, чтобы подчеркнуть их отличия от эукариотических, используют термин генофор (англ. genophore )). Область, где локализована хромосома, называется нуклеоид и не окружена мембраной. В связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, а транскрипция и трансляция сопряжены.

Отдельная клетка может содержать лишь 80 % от суммы генов, имеющихся во всех штаммах её вида (т. н. «коллективный геном»).

Помимо хромосомы, в клетках бактерий часто находятся плазмиды - также замкнутые в кольцо ДНК, способные к независимой репликации . Они могут быть настолько велики, что становятся неотличимы от хромосомы, но содержат дополнительные гены, необходимые лишь в специфических условиях. Специальные механизмы распределения обеспечивают сохранение плазмиды в дочерних клетках так, что они теряются с частотой менее 10 −7 в пересчёте на клеточный цикл. Специфичность плазмид может быть весьма разнообразной: от присутствия лишь у одного вида-хозяина до плазмиды RP4, встречающейся почти у всех грамотрицательных бактерий. В плазмидах кодируются механизмы устойчивости к антибиотикам , разрушения специфических веществ и т. д., nif-гены, необходимые для азотфиксации, также находятся в плазмидах. Ген плазмиды может включаться в хромосому с частотой около 10 −4 - 10 −7 .

В ДНК бактерий, как и в ДНК других организмов, выделяются транспозоны - мобильные сегменты, способные перемещаться из одной части хромосомы к другой, или во внехромосомные ДНК. В отличие от плазмид, они неспособны к автономной репликации и содержат IS-сегменты - участки, которые кодируют свой перенос внутри клетки. IS-сегмент может выступать в роли отдельной транспозоны.

Горизонтальный перенос генов

У прокариот может происходить частичное объединение геномов. При конъюгации клетка-донор в ходе непосредственного контакта передаёт клетке-реципиенту часть своего генома (в некоторых случаях весь). Участки ДНК донора могут обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Аналогично бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая её в свой геном в случае высокой степени гомологии с собственной ДНК. Данный процесс носит название трансформация . В природных условиях протекает обмен генетической информацией при помощи умеренных фагов (трансдукция). Кроме этого, возможен перенос нехромосомных генов при помощи плазмид определённого типа, кодирующих этот процесс, процесс обмена другими плазмидами и передачи транспозон.

При горизонтальном переносе новых генов не образуется (как то имеет место при мутациях), однако осуществляется создание разных генных сочетаний. Это важно по той причине, что естественный отбор действует на всю совокупность признаков организма.

Клеточная дифференциация

Клеточная дифференциация - изменение набора белков (обычно также проявляющееся в изменении морфологии) при неизменном генотипе.

Образование покоящихся форм

Образование особо устойчивых форм с замедленным метаболизмом, служащих для сохранения в неблагоприятных условиях и распространения (реже для размножения) является наиболее распространённым видом дифференциации у бактерий. Наиболее устойчивыми из них являются эндоспоры , формируемые представителями Bacillus , Clostridium , Sporohalobacter , Anaerobacter (образует 7 эндоспор из одной клетки и может размножаться с их помощью ) и Heliobacterium . Образование этих структур начинается как обычное деление и на первых стадиях может быть превращено в него некоторыми антибиотиками. Эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °C, высушивание в течение 1000 лет и, по некоторым данным, сохраняются в почвах и горных породах в жизнеспособном состоянии миллионы лет.

Менее устойчивыми являются экзоспоры , цисты (Azotobacter , скользящие бактерии и др.), акинеты (цианобактерии) и миксоспоры (миксобактерии).

Другие типы морфологически дифференцированных клеток

Актиномицеты и цианобактерии образуют дифференцированные клетки, служащие для размножения (споры, а также гормогонии и баеоциты соответственно). Необходимо также отметить структуры, подобные бактероидам клубеньковых бактерий и гетероцистам цианобактерий, служащие для защиты нитрогеназы от воздействия молекулярного кислорода.

Классификация

Наибольшую известность получила фенотипическая классификация бактерий, основанная на строении их клеточной стенки, включённая, в частности, в IX издание Определителя бактерий Берджи (1984-1987). Крупнейшими таксономическими группами в ней стали 4 отдела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные), Tenericutes (микоплазмы) и Mendosicutes (археи).

В последнее время всё большее развитие получает филогенетическая классификация бактерий (и именно она используется в Википедии), основанная на данных молекулярной биологии. Одним из первых методов оценки родства по сходству генома был предложенный ещё в 1960-х годах метод сравнения содержания гуанина и цитозина в ДНК. Хотя одинаковые значения их содержания и не могут дать никакой информации об эволюционной близости организмов, их различия на 10 % означают, что бактерии не принадлежат к одному роду. Другим методом, произведшим в 1970-е настоящую революцию в микробиологии, стал анализ последовательности генов в 16s рРНК , который позволил выделить несколько филогенетических ветвей эубактерий и оценить связи между ними. Для классификации на уровне вида применяется метод ДНК-ДНК гибридизации . Анализ выборки хорошо изученных видов позволяет считать, что 70 % уровень гибридизации характеризует один вид, 10-60 % - один род, менее 10 % - разные роды.

Филогенетическая классификация отчасти повторяет фенотипическую, так, группа Gracilicutes присутствует и в той и в другой. В то же время систематика грамотрицательных бактерий была полностью пересмотрена, архебактерии и вовсе выделены в самостоятельный таксон высшего ранга , часть таксономических групп разбита на части и перегруппирована, в одни группы объединены организмы с совершенно разными экологическими функциями, что вызывает ряд неудобств и недовольство части научного сообщества. Объектом нареканий становится и то, что проводится фактически классификация молекул, а не организмов.

Происхождение, эволюция, место в развитии жизни на Земле

Бактерии наряду с археями были одними из первых живых организмов на Земле, появившись около 3,9-3,5 млрд лет назад. Эволюционные взаимоотношения между этими группами ещё до конца не изучены, есть как минимум три основные гипотезы : Н. Пэйс предполагает наличие у них общего предка протобактерии, Заварзин считает архей тупиковой ветвью эволюции эубактерий, освоившей экстремальные местообитания; наконец, по третьей гипотезе археи - первые живые организмы, от которых произошли бактерии.

Патогенные бактерии

Патогенными называются бактерии, паразитирующие на других организмах. Бактерии вызывают большое количество заболеваний человека, таких как чума (Yersinia pestis ), сибирская язва (Bacillus anthracis ), лепра (проказа, возбудитель: Mycobacterium leprae ), дифтерия (Corynebacterium diphtheriae ), сифилис (Treponema pallidum ), холера (Vibrio cholerae ), туберкулёз (Mycobacterium tuberculosis ), листериоз (Listeria monocytogenes ) и др. Открытие патогенных свойств у бактерий продолжается: в 1976 обнаружена болезнь легионеров , вызываемая Legionella pneumophila , в 1980-е -1990-е годы было показано, что Helicobacter pylori вызывает язвенную болезнь и даже рак желудка , а также хронический


В этот самый момент, человек, когда ты читаешь эти строки, ты получаешь пользу от работы бактерий. От кислорода, который мы вдыхаем, до питательных веществ, которые извлекает желудок из еды, нам нужно благодарить бактерий за процветание на этой планете. В нашем организме микроорганизмов, включая бактерий, больше, чем наших собственных клеток примерно в десять раз. По сути, мы больше микробы, чем люди.

Только недавно мы начали понемногу понимать микроскопические организмы и их влияние на нашу планету и здоровье, но история показывает, что много веков назад наши предки уже использовали мощь бактерий, ферментируя продукты питания и напитки (кто-нибудь слышал о хлебе и пиве?).

В 17 веке мы начали изучать бактерий уже непосредственно в наших телах в тесной связи с нами - во рту. Любопытство Антони ван Левенгука позволило обнаружить бактерии, когда он изучал бляшку между его собственными зубами. Ван Левенгук поэтически описал бактерий, обозначив бактериальную колонию на своих зубах как «немного белого вещества, похожего на застывшее тесто». Разместив образец под микроскопом, ван Левенгук увидел, что микроорганизмы движутся. Так они живые!

Вы должны знать, что бактерии сыграли важнейшую роль для Земли, став ключевым моментом в создании пригодного для дыхания воздуха и биологического богатства планеты, которую мы зовем домом.

В этой статье мы предоставим вам общую картину об этих крошечных, но очень влиятельных микроорганизмах. Мы рассмотрим хорошие, плохие и совершенно причудливые способы, которыми бактерии формируют историю человека и окружающей среды. Для начала рассмотрим, чем бактерии отличаются от других видов жизни.

Основы бактерий

Что ж, если бактерии незаметны невооруженному глазу, откуда мы можем знать так много о них?

Ученые разработали мощные микроскопы, чтобы взглянуть на бактерий - их размеры варьируются от одного до нескольких микрон (миллионной части метра) - и выяснить, как они соотносятся с другими формами жизни, растениями, животными, вирусами и грибками.

Как вы, возможно, знаете, клетки - это строительные кирпичики жизни, из них состоят и ткани нашего тела, и дерево, которое растет за окном. Люди, животные и растения обладают клетками с генетической информацией, заключенной в мембране под названием ядро. Эти типы клеток, которые называются эукариотическими, обладают специальными органеллами, каждая из которых выполняет уникальную работу, помогая клетке работать.

Бактерии, однако, не имеют ядер, и их генетический материал (ДНК) свободно плавает внутри клетки. У этих микроскопических клеток нет органелл и они обладают другими методами воспроизводства и передачи генетического материала. Бактерии считаются прокариотическими клетками.

Выживают ли бактерии в среде с кислородом или без

Их форма: палочки (bacillus), круги (cocci) или спирали (spirillum)

Являются ли бактерии грамотрицательными или грамположительными, то есть обладают ли внешней защитной мембраной, препятствующей окрашиванию внутренностей клетки

Как бактерии перемещаются и изучают окружающую среду (у многих бактерий есть жгутики, крошечные плетевидные структуры, которые позволяют им передвигаться в среде)

Микробиология - наука о всех типах микробов, включая бактерии, археи, грибы, вирусы и простейшие - позволяет отличать бактерии от их микробных братьев.

Похожие на бактерии прокариоты, ныне классифицирующиеся как археи, когда-то были вместе с бактериями, но когда ученые узнали о них больше, они предоставили бактериям и археям собственные категории.

Микробное питание (и миазма)

Как и людям, животным и растениям, бактериям нужна пища для выживания.

Некоторые бактерии - автотрофы - используют основные ресурсы вроде солнечного света, воды и химических веществ из окружающей среды для создания пищи (подумайте о цианобактериях, которые превращали солнечный свет в кислород в течение 2,5 миллионов лет). Другие бактерии ученые называют гетеротрофами, потому что они черпают энергию из существующих органических веществ в качестве пищи (к примеру, мертвые листья на лесной почве).

Правда в том, что то, что может быть вкусным для бактерий, будет нам противно. Они развивались, чтобы поглощать все типы продуктов, от разливов нефти и побочных продуктов ядерного распада до человеческих отходов и продуктов разложения.

Но склонность бактерий к конкретному источнику питания может принести пользу обществу. К примеру, специалисты по искусствам из Италии обратились к бактериям, которые могут поедать избыточные слои соли и клея, снижающие долговечность бесценных художественных произведений. Умение бактерий перерабатывать органические вещества также очень полезно для Земли, как в почве, так и в воде.

Исходя из ежедневного опыта, вы хорошо знакомы с запахом, который вызывают бактерии, поглощающие содержимое вашей мусорной корзины, перерабатывая остатки пищи и испуская собственные газообразные побочные продукты. Однако этим все не ограничивается. Вы также можете обвинить бактерии в том, что они вызывают эти неловкие моменты, когда вы сами испускаете газы.

Одна большая семья

Бактерии растут и образуют колонии, когда выпадает шанс. Если еда и экологические условия являются благоприятными, они размножаются и образуют липкие скопления, так называемые биопленки, чтобы выжить на разных поверхностях - от горных пород до зубов вашего рта.

У биопленок есть свои плюсы и минусы. С одной стороны, они взаимовыгодны природным объектам (мутуализм). С другой же - они могут быть серьезной угрозой. К примеру, врачи, которые лечат пациентов с медицинскими имплантатами и устройствами, серьезно озабочены биопленками, поскольку они представляют собой этакую недвижимость для бактерий. После колонизации биопленки могут вырабатывать побочные продукты, которые токсичны - а иногда и смертельны - для человека.

Как и люди в городах, клетки в биопленке сообщаются друг с другом, обмениваются информацией о продуктах питания и потенциальной опасности. Но вместо того, чтобы звонить соседям по телефону, бактерии отправляют записки с помощью химических веществ.

Также бактерии не боятся жить самостоятельно. Некоторые виды разработали интересные способы, чтобы выживать в суровых условиях. Когда еды больше нет, а условия становятся невыносимыми, бактерии консервируют себя, создавая жесткую оболочку - эндоспору, которая помещает клетку в состояние покоя и сохраняет генетический материал бактерии.

Ученые находят бактерии в таких временных капсулах, которые хранились и 100, и даже 250 миллионов лет. Это говорит о том, что бактерии могут самостоятельно храниться в течение длительного времени.

Теперь, когда мы знаем, какие возможности предоставляют колонии бактериям, давайте разберемся, как они попадают туда - путем деления и размножения.

Размножение бактерий

Как бактерии создают колонии? Как и другим формам жизни на Земле, бактериям нужно самокопироваться, чтобы выживать. Другие организмы делают это путем полового размножения, но не бактерии. Но сначала давайте обсудим, почему разнообразие - это хорошо.

Жизнь проходит естественный отбор, ну или селективные силы определенной среды позволяют одному типу процветать и размножаться больше, чем другому. Возможно, вы помните, что гены - это механизм, который инструктирует клетку, что ей делать, и определяет, какого цвета будут ваши волосы и глаза. Вы получаете гены от своих родителей. Половое размножение приводит к мутациям, или случайным изменениям в ДНК, что создает разнообразие. Чем больше генетического разнообразия, тем больше шансов, что организм сможет приспособиться к ограничениям окружающей среды.

Для бактерий воспроизводство не зависит от встречи с правильным микробом; они просто копируют собственную ДНК и делятся на две идентичных клетки. Этот процесс, называемый двоичным делением, происходит, когда одна бактерия делится на две, копируя ДНК и передавая ее обеим частям разделенной клетки.

Поскольку в конечном итоге рожденная клетка будет идентична той, из которой была рождена, такой метод размножения не самый лучший для создания разнообразного генофонда. Как же бактерии приобретают новые гены?

Оказывается, бактерии используют хитрый трюк: горизонтальный перенос генов, или обмен генетическим материалом без воспроизводства. Есть несколько способов, которые используют бактерии для этого. Один способ включает сбор генетического материала из окружающей среды вне клетки - из других микробов и бактерий (через молекулы под названием плазмиды). Другой способ - вирусы, которые используют бактерии в качестве дома. Заражая новую бактерию, вирусы оставляют генетический материал предыдущей бактерии в новой.

Обмен генетическим материалом дает бактериям гибкость к адаптации, и они адаптируются, если чувствуют стрессовые изменения в окружающей среде, такие как нехватка продовольствия или химические изменения.

Понимание того, как адаптируются бактерии, чрезвычайно важно для борьбы с ними и создания антибиотиков в медицине. Бактерии могут обмениваться генетическим материалом так часто, что порой лечение, которое работало раньше, уже не работает.

Ни высоких гор, ни большой глубины

Если задаться вопросом «где бактерии?», проще спросить «где бактерий нет?».

Бактерии обнаруживаются практически везде на Земле. Невозможно представить количество бактерий на планете одновременно, но по некоторым оценкам их число составляет (бактерий и архей вместе) 5 октиллионов - это число с 27 нулями.

Классификация видов бактерий чрезвычайно сложна по понятным причинам. Сейчас есть примерно 30 000 официально идентифицированных видов, но база знаний постоянно растет, и есть мнения, что перед нами только верхушка айсберга от всех видов бактерий.

Правда в том, что бактерии были вокруг на протяжении очень долгого времени. Они породили одни из самых древних окаменелостей, которым 3,5 миллиарда лет. Результаты научных исследований позволяют предположить, что цианобактерии начали создавать кислород примерно 2,3-2,5 миллиарда лет назад в мировом океане, насытив атмосферу Земли кислородом, которым мы дышим по сей день.

Бактерии могут выживать в воздухе, воде, почве, льде, на жаре, на растениях, в кишечнике, на коже - везде.

Некоторые бактерии являются экстремофилами, то есть могут противостоять экстремальным условиям, когда либо очень жарко или холодно, либо отсутствуют питательные вещества и химикаты, которые мы обычно ассоциируем с жизнью. Исследователи обнаружили такие бактерии в Марианской впадине, самой глубокой точке на Земле на дне Тихого океана, возле гидротермальных источников в воде и во льду. Встречаются также бактерии, которые любят высокую температуру - такие, например, окрашивают опалесцирующий бассейн в Йеллоустонском национальном парке.

Плохие (для нас)

Хотя бактерии делают важный вклад в здоровье человека и планеты, у них есть и темная сторона. Некоторые бактерии могут быть патогенными, то есть вызывать заболевания и болезни.

На протяжении истории человечества некоторые бактерии (понятно почему) получили плохую репутацию, вызвав панику и истерию. Взять, к примеру, чуму. Бактерия, вызывающая чуму - чумная палочка Yersinia pestis - не только убила более 100 миллионов человек, но и, возможно, внесла свой вклад в распад Римской империи. До появления антибиотиков, лекарств, которые способствуют борьбе с бактериальными инфекциями, их было очень сложно остановить.

Даже сегодня эти патогенные бактерии серьезно нас пугают. Благодаря выработке устойчивости к антибиотикам, бактерии, вызывающие сибирскую язву, пневмонию, менингит, холеру, сальмонеллез, ангину и прочие болезни, которые еще и остаются рядом с нами, всегда представляют опасность для нас.

Особенно верно это для золотистого стафилококка, бактерии, ответственной за стафилококковые инфекции. Эта «сверхбактерия» приводит к появлению многочисленных проблем в клиниках, поскольку пациенты весьма часто подхватывают эту инфекцию при внедрении медицинских имплантатов и катетеров.

Мы уже говорили о естественном отборе и о том, что некоторые бактерии вырабатывают разнообразные гены, которые помогают им справиться с условиями окружающей среды. Если у вас есть инфекция, и некоторые из бактерий в вашем теле отличаются от других, антибиотики могут поразить большую часть популяции бактерий. Но те бактерии, которые выживут, выработают устойчивость к лекарству и останутся, дожидаясь следующего шанса. Поэтому врачи рекомендуют завершать курс антибиотиков до конца, да и вообще обращаться к ним как можно реже, только в крайнем случае.

Биологическое оружие - еще один пугающий аспект этой беседы. Бактерий можно использовать как оружие в некоторых случаях, в частности, сибирскую язву так и использовали в одно время. Кроме того, не только люди страдают от бактерий. Отдельный вид - Halomonas titanicae - проявил аппетит к затонувшему океанскому лайнеру «Титаник», разъедая металл исторического корабля.

Конечно, бактерии могут приносить не только вред.

Героические бактерии

Давайте изучим хорошую сторону бактерий. В конце концов, эти микробы подарили нам такие вкусные продукты, как сыр, пиво, закваску и другие ферментированные элементы. Они также улучшают здоровье людей и используются в медицине.

Отдельных бактерий можно поблагодарить за формирование человеческой эволюции. Наука собирает все больше данных о микрофлоре - микроорганизмах, которые живут в наших телах, особенно в пищеварительной системе и кишечнике. Исследования показывают, что бактерии, новые генетические материалы и разнообразие, которое они приносят в наши тела, позволяют людям адаптироваться к новым источникам пищи, которые раньше не использовались.

Посмотрим на это с другой стороны: выстилая поверхность вашего желудка и кишечника, бактерии «работают» на вас. Когда вы едите, бактерии и другие микробы помогают вам разбивать и добывать питательные вещества из пищи, особенно углеводы. Чем разнообразнее бактерии, которых мы потребляем, тем больше разнообразия получают наши тела.

Хотя наши знания о наших же микробах весьма скудны, есть основания полагать, что отсутствие некоторых микробов и бактерий в организме может быть связано со здоровьем, метаболизмом и восприимчивости к аллергенам человека. Предварительные исследования на мышах показали, что метаболические заболевания вроде ожирения связаны с разнообразием и здоровой микрофлорой, а не нашей преобладающей точкой зрения «калории приходят, калории уходят».

Сейчас активно исследуются возможности внедрения определенных микробов и бактерий в организм человека, которые могут дать определенные преимущества, однако на момент написания статьи общие рекомендации по их использованию пока не были установлены.

Кроме того, бактерии сыграли важную роль в развитии научной мысли и человеческой медицины. Бактерии сыграли ведущую роль в развитии постулатов Коха 1884 года, которые привели к общему пониманию того, что болезни вызываются определенным видом микробов.

Исследователи, изучавшие бактерии, случайно открыли пенициллин - антибиотик, который спас множество жизней. Также совсем недавно в связи с этим был открыт легкий способ редактировать геном организмов, который может осуществить революцию в медицине.

По сути, мы только начинаем понимать, как извлекать пользу из нашего сожительства с этими маленькими друзьями. К тому же непонятно, кто истинный хозяин Земли: люди или микробы.

Единственное, что спасает человека от заражения палочкой - желудочный сок, убивающий развитие бактерии. Если же споры начали образовываться, сдержать их рост очень тяжело. Они трудно выводятся даже при 10-минутном кипячении. Оптимальные условия для развития палочки ботулизма сохраняются, например, при холодном консервировании. При употреблении заражённой пищи только одного укуса продукта хватит, чтобы заразиться и умереть в течение одного дня. Ни один человек, ни одно животное на планете не имеет иммунитета к ботулизму. Всего один грамм на килограмм массы тела спороносной палочки становится гарантом развития ботулизма и летального исхода. Взрослый слон весит 5,5 тонн, он умрет менее чем за 3 дня при употреблении в пищу 0,005454 мг токсина.

10 фактов о микроорганизмах

1. Микробиологи считают, что на Земле всего 5*10 в тридцатой степени (5 нониллионов) бактерий. 2. Бактерия и бацилла - это одно и то же. Первое слово - греческого происхождения, а второе - латинского. 3. Внешний вид бактерий настолько удачен, что не менялся в течение миллиарда лет. Эволюция бактерий была исключительно внутренней. Этот феномен называется «синдромом Фольксвагена»: внешний вид знаменитого «Фольксвагена-жука» был таким удачным, что его сохраняли почти сорок лет. 4. Согласно идеям креационизма, все живые организмы были созданы во время сотворения мира и не могли появиться потом. Значит, Ной и его семьи должны были болеть чумой, холерой, менингитом, энцефалитом, амебной и бактериальной дизентерией, сыпным и брюшным тифом, сонной болезнью, малярией трехдневной, четырехдневной и тропической, и массой других болезней. Ведь все они оказались в его ковчеге! 5. Существуют бактерии, которые помогают чистить зубы. Ученые из шведского Каролинского института скрестили эти бактерии с обычными йогуртовыми и теперь пытаются сделать трансгенный йогурт, который позволит нам не чистить зубы. 6. Общий вес бактерий, живущих в организме человека, составляет 2 килограмма. 7. Во рту человека около 40 000 бактерий. Во время поцелуя от одного человека другому передается 278 различных культур бактерий. К счастью, 95 процентов из них не представляют опасности. 8. Самая большая бактерия - это открытая в 1999 году Thiomargarita namibiensis («серная жемчужина Намибии»). Она может достигать 0,75 мм в поперечнике. Это больше, чем стандартная точка (1/12 дюйма), равная 0,351 мм. 9. На минных полях Мозамбика живет бактерия, которая питается тринитротолуолом. Открытие может решить проблему разминирования. 10. Дворянские дети, которых приписывали к полкам, уходили в армию с серебряной посудой, что заключало в себе отнюдь не блажь богачей, а вполне прикладное значение: серебро уничтожало бактерии, что спасало юношей от различных массовых инфекционных заболеваний, например, холеры.

Человек на 90% состоит из микробов. Только в кишечнике содержится почти 2 кг бактерий

Человеческое тело, оказывается, почти целиком состоит из микроорганизмов. Однако пугаться прежде времени не стоит, пишет: эти существа - не чужеродные формы жизни. Для триллионов микроскопических жизненных форм человеческий организм является родным домом. «Мы, по сути, лишь на 10% люди, а все остальное - микробы», - уверяет доктор Рой Д. Слитор из ирландского Института Корка. За четыре года основательного изучения предмета он пришел к выводу о том, что истинная роль бактериальных популяций, проживающих в человеческом организме, незаслуженно умаляется. Наши взаимосвязи с одноклеточными существами оказались настолько тесными, что прогрессивные ученые теперь рассматривают человека и населяющих его бактерий в качестве единого сверхорганизма. «На сегодняшний день бактерии рассматриваются в качестве виртуального органа, продукты жизнедеятельности которого значительно выше, чем у печени», - объясняет доктор Слитор. По его данным, в человеческом теле содержится порядка 500 различных видов бактерий. Благодаря их непрестанному размножению в организме взрослого человека проживает около 100 трлн одноклеточных существ - почти в десять раз больше, чем те несколько триллионов клеток, из которых состоит собственно организм человека. К примеру, только в кишечнике содержится почти 2 кг бактерий. По словам доктора Слитора, бактерии не только наши спутники, но и незаменимые помощники. «Это бактериально-человеческое взаимодействие по большей части носит характер симбиоза, - рассказывает ученый. - Это означает, что в обмен на продовольствие бактерии участвуют в процессах пищеварения, производства витаминов и укрепления нашей иммунной системы». Кроме того, дружественные микроорганизмы защищают хозяина от возбудителей инфекционных заболеваний, сражаясь с «враждебными» бактериями. Для любителей йогуртов и других «живых» кисломолочных продуктов эта новость, безусловно, хорошая. Однако доктор Слитор предупреждает, что укрепляющие способности «пробиотических» продуктов весьма недолговечны. «Большая часть этих бактерий не задерживаются в нашем организме. Они проходят сквозь тело, не сумев организовать колонию», - с грустью констатирует он. С другой стороны, постоянное употребление такого рода продуктов может способствовать укреплению колоний полезных бактерий. Особенно это касается случаев, когда организм ослаблен приемом антибиотиков.

Самую большую из известных бактерий можно увидеть невооружённым глазом

Самая большая из известных бактерий - недавно открытый одноклеточный организм, обитающий в кишечном тракте рыбы у острова Ящериц в Квинслэнде. До этого бактерии считались столь мелкими, что их невозможно было увидеть невооруженным глазом. Однако эта новая гигантская бактерия достигает размера газетного дефиса. Доктор Эстер Энгерт, исследователь из Индианского университета в Блумингтоне и одна из тех, кто совершила открытие этой гигантской бактерии, рассказывает: «Бактерия такая большая, что мы можем прикрепить к ней электроды». Бактерию назвали Epulopiscium Fishelsoni, а рыба, в которой она живет, называется Acanthurus Nigrofuscus. Теоретически, если мы съедим эту рыбу, то можем стать домом для огромной бактерии. Однако это не значит, что она задержится в нас надолго. Вполне вероятно, она не сможет выжить в столь большом организме, как человеческий.

10 фактов о ВИЧ и СПИДе

На сегодня вирус иммунодефицита человека (ВИЧ) - самый изученный из всех вирусов. О ВИЧ опубликовано более 200 тыс. научных статей. За 30 лет мы узнали его строение, эпидемиологию, жизненный цикл, функции его белков и многое другое. Как тут выбрать 10 ключевых фактов? Я постарался охватить все области - от фундаментальной науки до медицины. 1. ВИЧ заражает лимфоциты-хелперы, которые регулируют иммунный ответ. Смерть этих клеток ведет к дерегуляции иммунитета - его чрезмерной активации и одновременно неспособности фокусироваться на патогенных микроорганизмах. 2. ВИЧ наносит удар по иммунной системе в течение первых недель инфекции, но симптомы нарушения иммунитета в среднем проявляются через 8 лет в виде синдрома приобретенного иммунодефицита (СПИД). Это происходит, когда иммунная система, до этого лихорадочно восполняющая потери лимфоцитов-хелперов, истощается и проигрывает борьбу с вирусом. 3. ВИЧ принадлежит к семейству ретровирусов, роду лентивирусов. Частицы ВИЧ содержат геном в виде двух копий РНК, которые вирус превращает в ДНК после проникновения в клетку. Эта ДНК встраивается вирусом в ДНК клетки хозяина и остается там до смерти клетки. 4. Лентивирусы существуют миллионы лет и были найдены у кроликов, кошек, лошадей и ряда африканских обезьян. ВИЧ проник в человеческую популяцию от шимпанзе примерно 100 лет назад в западной Африке. 5. ВИЧ передается через кровь, при сексе или от матери к ребенку при родах. В быту, при поцелуях, укусах и рукопожатиях ВИЧ не передается. Не передается он и комарами. 6. Наиболее надежным способом предотвращения инфицирования ВИЧ при сексе является презерватив. За последние 2 года три новых способа предотвращения ВИЧ показали обнадеживающие результаты: вакцина, прием лекарств до секса и любрикационный гель с лекарствами, но эффективность всех трех пока слишком низка (30–50%), чтобы их можно было вводить в широкое употребление. 7. Было разработано более 20 лекарств, останавливающих репликацию ВИЧ (это больше, чем для любого другого вируса). Лекарства снижают количество вируса в крови до ничтожного уровня и предотвращают СПИД. Также лекарства позволяют предотвратить передачу вируса от матери к ребенку при родах и при грудном вскармливании. 8. Встроившись в ДНК клетки, ВИЧ иногда переходит в латентную форму, которая никак себя не проявляет, а потому ни лекарства, ни иммунная система не могут на него повлиять. В таком виде он может существовать десятки лет. Из-за латентных вирусов лекарства от ВИЧ приходится принимать всю жизнь. В организме переставшего принимать лекарства человека вирус выходит из латентной формы, и болезнь развивается снова. 9. ВИЧ очень гибок генетически, что позволяет ему уходить от иммунного ответа, а также приобретать устойчивость к лекарствам. Для предотвращения устойчивости к лекарствам при лечении их применяют по три одновременно. 10. В мире 33 миллиона человек живут с ВИЧ, из них больше половины - женщины. Несмотря на огромный прогресс в предотвращении ВИЧ-инфекции (во многих странах эпидемия идет на спад) и лечении СПИДа (больше 5 миллионов человек получают лекарства), каждый год 2 миллиона человек умирают от СПИДа, потому что не имеют доступа к лекарствам.

20 фактов о вирусах

Вирусы не являются живыми существами. У них нет клеток, они не умеют преобразовывать пищу в энергию, и без “хозяина” это всего лишь небольшие сгустки химических веществ. Вирусы, наоборот, не являются мертвыми – у них есть гены, они размножаются, для них действуют процессы естественного отбора. Ученые путались обнаружить вирусы до 1892 года, когда русский микробиолог Дмитрий Ивановский доказал, что заражение табачных растений происходит с помощью существ, намного меньших чем бактерии. Эти существа оказались вирусом, а конкретно – вирусом табачной мозаики. Американский биохимик Вендель Стэнли выделил вышеуказанный табачный вирус в чистом виде как игольчатые протеиновые кристаллы, за что получил Нобелевскую премию в 1946 году в области химии. Некоторые вирусы внедряют свою ДНК в бактерию через полые волоски, которые присутствуют у многих бактерий. Слово “вирус” (virus) произошло от латинского слова, означающего “яд” или “грязная жидкость”, что вполне логично для явления, вызывающего лихорадку и простуду. В 1992 году ученые проследили путь источник пневмонии, вспыхнувшей в Англии – оказалось, что это вирус, скрывавшийся внутри амебы, живущей в башнях градирни (охладительной башни). Он был настолько крупным, что вначале ученые приняли его за бактерию. Так называемый мимивирус назван так из-за того, что имитирует поведение и строение бактерии. Некоторые специалисты считают, что он является промежуточным звеном между бактериями и вирусами, другие уверены, что это отдельная форма жизни. Данный вирус характеризуется наиболее объемным и сложным набором ДНК среди всех вирусов. В теле мимивируса более 900 генов, которые кодируют протеины, не использующиеся в других вирусах. Его геном в два раза больше, чем у других известным вирусов и даже бактерий. Есть еще более крупные вирусы под названием мамавирус. Их размеры больше, чем у некоторых бактерий, и эти вирусы также обладают вирусами-спутниками, которые так и называются – Sputnik. Амебы для вирусов являются своеобразными песочницами и бесплатными столовыми – они поглощают крупные объекты в пределах своей досягаемости и являются источником питательных веществ для бактерий, которые внутри амебы обмениваются генами с другими бактериями и вирусами. Вирусы умеют заражать животных, растения, грибки, одноклеточные организмы и бактерии. Мамавирусы вместе со спутником заражают также другие вирусы. Мы все, возможно – результат работы вирусов, так как значительная часть нашего генома содержит “осколки” и целые части вирусов, которые внедрились в наших предков миллионы лет назад, и были “одомашнены”. Многие из образований в наших клетках являются на первый взгляд бесполезными, что объясняется в том числе тем, что это – вирусы, которые благополучно прижились внутри нас на разных этапах эволюции. Большинство из внедренных в наш геном древних вирусов не существуют в природе в наше время. В 2005 году французские ученые начали работу по “воскрешению” одного из таких вирусов. Один из воскрешенных таким образом вирусов под кодовым названием Феникс, оказался нежизнеспособным. Видимо, не все так просто. Некоторые вирусные осколки в нашем геноме, видимо, ответственны за работы автоимунной системы и развитие раковых заболеваний. Самой своей жизнью мы обязаны вирусам – часть из протеинов, закодированных вирусной ДНК в организме матери, “корректируют” имунную систему организма, чтобы она не атаковала эмбрион во время развития. Мы все на Земле являемся дальними родственниками Ученые имеют основания считать, что миллиард лет назад один из вирусов внедрился в клетку бактерии и из этого получилось клеточное ядро, которое впоследствии привело к образованию многообразия флоры и фауны, включая нас с вами.

Зараза побеждает

«Устойчивость к противомикробным препаратам создает угрозу возвращения к “доантибиотиковой эре”», - с паническими интонациями сообщает Всемирная организация здравоохранения. Тот факт, что появляется все больше микробов, которым наплевать на все наши лекарства, беспокоит медиков во всем мире. Это война. С нашей стороны счет идет на сотни миллионов погибших. Но противник потерял гораздо больше - миллиарды миллиардов. Еще недавно казалось, что мы выиграли эту битву. В 30-х годах прошлого века у нас в руках оказалось сокрушающее оружие - эта штука была помощнее, чем порох или атомная бомба. Хрестоматийная история: молчаливый шотландец Александр Флеминг как-то забыл закрыть в своей лаборатории емкость с бактериями. Бардак на рабочем месте был вознагражден Нобелевской премией, ибо к бактериям случайно попала плесень, что завершилось созданием первого антибиотика - пенициллина. В медицине случилась революция. Пневмонию и сифилис стало лечить не намного сложнее, чем насморк. Сейчас всевозможные «-цины» и «-лины» выстроились в ряд на полках аптек. И пока микробы отступают. Но, как это часто бывает, за революцией последовала ползучая контрреволюция. Маленькие тупые организмы, стремящиеся во что бы то ни стало поселиться в нашем симпатичном теле, научились бороться с лекарствами. «Мы живем в эпоху зависимости от антибиотиков и других противомикробных препаратов для лечения состояний, которые несколько десятилетий назад были бы смертельными. Но когда появляется устойчивость к противомикробным препаратам, известная также как лекарственная устойчивость, эти препараты становятся неэффективными», - сообщает Всемирная организация здравоохранения (ВОЗ). Про лекарственную устойчивость известно было давно. Но сейчас ее масштабы упорно ассоциируются со словами «угроза», «кризис» или даже «катастрофа». В нынешнем году самой актуальной проблемой ВОЗ объявила именно эту: теме лекарственной устойчивости посвящен Всемирный день здоровья, который будут отмечать 7 апреля. Вот только один факт из отчетов ВОЗ: «Ежегодно по меньшей мере 25 тысяч пациентов в одном лишь Европейском союзе умирают от инфекций, вызванных бактериями с множественной лекарственной устойчивостью». Бактерии, может быть, и не такие умные, как мы, но зато размножаются быстрее. Количество их поколений, живших после открытия Флеминга, оценивается числом с десятками, если не сотнями нулей. А значит, если появляется хоть один экземпляр-мутант, способный сопротивляться нашим лекарствам, то вскоре он может создать целую армию. Особенно тяжелые бои происходят на территории больниц, где цикл микроб - антибиотик повторяется максимально часто. Палаты и операционные становятся базами для самых закаленных бойцов античеловеческого фронта. Так называемые госпитальные инфекции становится лечить все труднее. В том, что лекарства перестают действовать, виновата не только логика эволюции. ВОЗ обвиняет фармацевтические корпорации в том, что они не торопятся создавать принципиально новые антибиотики, которые смогли бы убивать даже тренированных микробов. Их разработка требует больших денег, а прибыли они приносят не так уж и много: от инфекционных болезней можно быстро вылечиться - гораздо выгоднее делать те лекарства, которые нужно принимать всю жизнь. «Лишь 15 из 167 антибиотиков, находившихся в стадии разработки, имели новый механизм действия, потенциально способный противостоять множественной лекарственной устойчивости», - сообщается в отчете ВОЗ. Если продолжать военную метафору, то противник уже давно обзавелся бронетранспортерами, а его продолжает атаковать пехота с трехлинейками. Другой источник проблемы - неразборчивость врачей и их пациентов. «Высокая темпе-ратура? Болит голова? Уже третий день не проходит?» - этих симптомов достаточно, чтобы доктор или даже сам больной прибег к антибиотику. Но вполне вероятно, что болезнь вызвана вирусом гриппа, который глубоко равнодушен к этому классу лекарств (напомним: антибиотики бесполезны при вирусных заболеваниях!). Легче больному не станет, зато его микробы получат дополнительную тренировку. В некоторых западноевропейских странах даже проходила кампания под лозунгом «Антибиотики не назначаются автоматически». В результате во Франции количество случаев, когда выписывались эти препараты, снизилось на 27%, в Бельгии - на 36%. У нас пока таких кампаний не ведется. И я прошу считать эту колонку своим скромным вкладом в идеологическую борьбу с общим врагом. С микробами.

10 неизлечимых болезней

В современной медицине многое было сделано для того, чтобы искоренить и вылечить болезни, но, к сожалению, существует еще много ужасающих болезней, от которых не существует лечения. 1. Геморрагическая лихорадка Эбола Эбола - это вирус семейства филовирусов, который вызывает тяжелую и часто смертельную вирусную геморрагическую лихорадку. Вспышки этого заболевания наблюдались у приматов, таких как гориллы и шимпанзе, и у людей. Болезнь характеризуется сильной лихорадкой, сыпью, и обильным кровотечением. У людей, летальность составляет от 50 до 90 процентов. Название вируса происходит от реки Эбола, находящейся в северном бассейне реки Конго в центральной Африке, где он впервые появился в 1976 году. В тот год вспышки заболевания в Заире и в Судане привели к сотням смертей. Вирус Эбола тесно связан с вирусом Марбург, который был открыт в 1967 году, и оба эти вируса являются единственными представителями филовирусов, которые вызывают эпидемию у людей. Геморрагический вирус распространяется через телесные жидкости и так, как у пациентов часто наблюдается рвота кровью, люди которые ухаживают за пациентом, часто подхватывают болезнь. 2. Полиомиелит Полиомиелит или детский спинномозговой паралич является острым вирусным инфекционным заболеванием нервной системы, которое начинается с общих симптомов таких как высокая температура, головная боль, тошнота, усталость, боль и спазмы в мышцах, за которыми иногда следует более серьезный и постоянный паралич мышц одной или больше конечностей, горла или груди. Больше половины всех случаев полиомиелита встречаются у детей до 5 лет. Паралич, который так часто ассоциируется с болезнью, на самом деле поражает меньше одного процента людей, зараженных вирусом полиомиелита. Только у 5-10 процентов инфицированных людей проявляются вышеупомянутые общие симптомы, и более чем у 90 процентов людей нет никаких признаков заболевания. Для тех, кто заразился полиовирусом, лечения не существует. С середины 20 века каждый год от этого заболевания страдали сотни тысяч детей. Начиная с 1960 годов благодаря широкому распространению вакцины от полиомиелита, полиомиелит был устранен в большинстве стран мира и сейчас является эндемичным только в нескольких странах Африки и Южной Азии. Каждый год около 1000-2000 детей остаются парализованными от полиомиелита. 3. Красная волчанка Красное волчанка является аутоиммунным заболеванием, которое приводит к хроническому воспалению в разных частях тела. Существует три основные формы волчанки: дискоидная красная волчанка, системная красная волчанка и лекарственная волчанка. Дискоидная волчанка поражает только кожу и, как правило, не включает внутренние органы. Она характеризуется сыпью или различными участками покраснения, покрытых серовато-коричневыми чешуйками, которые могут появляться на лице, шее и голове. Примерно в 10 процентах случаев у людей с дискоидной волчанкой, болезнь разовьется в более тяжелую системную форму волчанки. Системная красная волчанка является наиболее распространенной формой этой болезни. Она может поразить практически любой орган или структуру тела, особенно кожу, почки, суставы, сердце, желудочно-кишечный тракт, мозг и серозные оболочки. И, несмотря на то, что системная волчанка может поразить любую область тела, большинство людей испытывают симптомы только в нескольких органах. Кожная сыпь может напоминать ту, что присутствует при дискоидной волчанке. Также известно, что редко кто из людей имеет одинаковые симптомы. Это заболевание весьма разнообразно по своей природе и отмечается периодами, когда болезнь становиться активной, и периодами, когда симптомы не так очевидны. 4. Грипп Грипп является острой вирусной инфекцией верхних и нижних дыхательных путей, которая характеризуется высокой температурой, ознобом, общим чувством слабости, болями в мышцах, а также разного рода болезненностью в области головы и живота. Грипп вызывается несколькими штаммами вирусов семейства Ortomyxoviridae, которые подразделяются на типы A,B и C. Три основных типа, как правило, вызывают похожие симптомы, хотя они никак не связаны антигенно. Так, если вы инфицированы одним типом, это не дает иммунитета против других типов. Типы вирусов А приводят к крупным эпидемиям гриппа, а тип В вызывает небольшие локальные вспышки, тогда как вирусы типа С, как правило, не являются причиной заболевания у людей. Между периодами пандемии, вирусы проходят постоянную быструю эволюцию (процесс, называемый антигенная изменчивость) в ответ на натиск иммунитета у людей. Периодически, вирусы гриппа проходят крупные эволюционные изменения за счет приобретения новых сегментов генома от другого вируса гриппа, фактически становясь новым подтипом, от которого нет иммунитета. 5. Болезнь Кройтфельдта-Якоба Болезнь Кройтфельдта-Якоба является редким фатальным дегенеративным заболеванием центральной нервной системы. Она встречается во всем мире и проявляется с вероятностью один случай на миллион, при этом среди определенных групп населения, таких как ливийские евреи, уровень заболеваемости несколько выше. Заболевание чаще всего встречается среди взрослого населения в возрасте от 40 до 70 лет, хотя были и случаи среди молодых людей. И мужчины и женщины страдают от него в равной степени. Начало заболевания, как правило, характеризуется неясными психиатрическими и поведенческими изменениями, за которыми следует прогрессивная деменция, сопровождающаяся нарушением зрения и непроизвольными движениями. От болезни не существует лечения, и она, как правило, имеет фатальный исход в течение года от начала симптомов. Впервые болезнь была описана в 1920 году немецким неврологом Ганцом Герхардом Кройтфельдом и Альфонсом Якобом. Болезнь Кройтфельдта-Якоба схожа с другими нейродегенеративными заболеваниями, такими как куру, которое встречается среди людей, и почесуха, встречающееся среди овец. Все три заболевания являются типами передающейся губчатой энцефалопатии из-за характерной губчатой структуры нейронного разрушения, при котором ткани мозга будто наполнены дырами. 6. Диабет Сахарный диабет является нарушением углеводного обмена, характеризующийся нарушением способности организма производить или реагировать на инсулин, и, тем самым, поддерживать нужный уровень сахара в крови. Существует две основные формы диабета. Сахарный диабет 1-го типа, раньше назывался инсулинозависимый диабет и ювенильный диабет, и он обычно возникает в детстве. Это аутоиммунное заболевание, при котором иммунная система человека, страдающего диабетом, производит антитела, которые разрушают бета-клетки, производящие инсулин. Так как организм больше не может производить инсулин, требуются ежедневные инъекции гормона. Сахарный диабет 2-го типа или инсулиннезависимый диабет обычно проявляется после 40 лет, и становиться более распространенным по мере увеличения возраста. Он возникает из-за вялой секреции инсулина поджелудочной железой или снижения реакции в клетках-мишенях, выделяющих инсулин. Он связан с наследственностью и ожирением, особенно ожирением верхней части тела. Люди с диабетом 2-го типа могут контролировать уровень сахара в крови с помощью диеты и упражнений, а также инъекций инсулина и других лекарств. 7. СПИД (ВИЧ) СПИД или синдром приобретенного иммунодефицита является передаваемой болезнью иммунной системы, которая вызвана ВИЧ (вирусом иммунодефицита). ВИЧ атакует медленно, разрушая иммунную систему, защитную систему организма против инфекций, что делает человека восприимчивым различным инфекциям и определенным злокачественным новообразованиям, что, в конце концов, ведет к смерти. СПИД - это конечная стадия ВИЧ инфекции, во время которой возникают смертельные инфекции и опухоли. ВИЧ/СПИД распространился в 1980-х годах, особенно в Африке, откуда по предположениям он взял свое начало. Распространению способствовало несколько факторов, включая рост урбанизации, и дальних путешествий в Африку, международные переезды, изменение сексуальной морали и внутривенное употребление наркотиков. Согласно отчету ООН за 2006 год по ВИЧ/СПИД, около 39,5 миллиона людей живут с ВИЧ, около 5 миллионов людей заражаются ежегодно и около 3 миллионов умирают от СПИДа ежегодно. 8. Астма Бронхиальная астма является хроническим заболеванием дыхательных путей, при котором воспаленные дыхательные пути склонны сжиматься, вызывая эпизоды удушья, затрудненное дыхание, кашель и стеснение в груди, которые варьируются по тяжести от легкой до угрожающей жизни. Воспаленные дыхательные пути становятся сверхчувствительными к разнообразным стимулам, включая пылевые клещи, шерсть животных, пыльца, загрязнение воздуха, сигаретный дым, лекарства, погодные условия и физические упражнения. При этом стресс может усугубить симптомы. Астматические эпизоды могут начаться внезапно или может потребоваться несколько дней, прежде чем они разовьются. Несмотря на то, что первый эпизод может проявиться в любом возрасте, половина случаев возникает у детей до 10 лет, при этом она чаще возникает у мальчиков, чем у девочек. Среди взрослых уровень заболеваемости у женщин и мужчин примерно одинаковая. Когда астма развивается в детстве, она чаще связанна с унаследованной восприимчивостью к аллергенам, таким как пыльца, пылевые клещи, шерсть животных, которые вызывают аллергическую реакцию. У взрослых, астма также может развиться в ответ на аллергены, но вирусные инфекции, аспирин и упражнения могут также вызвать болезнь. Также у взрослых с астмой часто наблюдаются полипы и синусит. 9. Рак Рак относится к группе из более чем 100 различных заболеваний, характеризующихся неконтролируемым ростом аномальных клеток в организме. Рак поражает одного из трех человек, родившихся в развитых странах, и является одной из основных причин заболевания и смерти во всем мире. Несмотря на то, что рак был известен еще с древних времен, существенные улучшения в лечении рака были сделаны в середине 20-го века, в основном с помощью своевременной и точной диагностики, хирургии, лучевой терапии и химиотерапевтических препаратов. Такие достижения привели к снижению смертности от рака, а также стали основанием для оптимизма в лабораторных исследованиях при выяснении причин и механизмов болезни. Благодаря постоянному прогрессу в клеточной биологии, генетике и биотехнологии, исследователи сейчас обладают фундаментальными знаниями о том, что происходит в раковых клетках и у больных раком, что способствует дальнейшему прогрессу в предотвращении, диагностике и лечении болезни. 10. Простуда Простуда - это острое вирусное заболевание, которое начинается в верхних дыхательных путях, иногда распространяется на нижние отделы и может вызвать вторичные инфекции в глазах или среднем ухе. Простуду могут вызвать более 100 вирусов, включая вирус парагриппа, гриппа, респираторный синцитиальный вирус, реовирусы и другие. Однако самой частой причиной считаются риновирусы. Термин простуда ассоциируется с ощущением холода или воздействием холодной окружающей среды. Изначально считалось, что простуду вызывает переохлаждение, но исследования показали, что это не так. Простуду подхватывают при контакте с инфицированными людьми, а не от холода, охлажденных мокрых ног или сквозняков. Люди могут быть носителями вируса и не испытывать симптомы. Инкубационный период обычно короткий, составляя от одного до четырех дней. Вирусы, начинают распространяться от инфицированного человека до того, как появятся симптомы и распространение достигает пика во время симптоматической фазы. Существует такое разнообразие вирусов, взывающих простуду, что человек практически не может выработать иммунитет к простуде. На сегодняшний день не существует лекарств, которые бы существенно сократили продолжительность болезни, а большая часть лечения направлена на то, чтобы смягчить симптомы.

Окружают нас всюду. Многие из них очень нужны и полезны человеку, а многие наоборот, вызывают страшные заболевания.
Знаете ли Вы, каких форм бывают бактерии? А как они размножаются? А чем питаются? Хотите узнать?
.сайт) поможет Вам найти в этой статье.

Формы и размеры бактерий

Большинство бактерий – это одноклеточные организмы. Они отличаются большим разнообразием форм. В зависимости от формы бактериям даны и названия. Например, бактерии округлой формы называются кокками (всем известные стрептококки и стафилококки), бактерии в виде палочек называются бациллами, псевдомонадами или клостридиями (к бактериям такой формы относится знаменитая туберкулезная палочка или палочка Коха ). Могут бактерии иметь форму спиралек, тогда их имена спирохеты, вибриллы или спириллы . Не так часто, но случаются бактерии в форме звездочек, разных многоугольников или иных геометрических фигур.

Бактерии совсем не велики, их размеры колеблются от половины до пяти микрометров. Самая большая бактерия имеет размер семьсот пятьдесят микрометров. После обнаружения нанобактерий оказалось, что их размеры намного меньше, чем ранее представляли себе ученые. Однако, на сегодняшний день, нанобактерии не слишком хорошо изучены. Некоторые ученые даже сомневаются в их существовании.

Агрегаты и многоклеточные организмы

Бактерии могут прикрепляться друг к другу при помощи слизи, образуя клеточные агрегаты. При этом каждая отдельная бактерия представляет собой самодостаточный организм, жизнедеятельность которого никак не зависит от приклеенных к ней сородичей. Иногда же бывает так, что бактерии приклеиваются для того, чтобы осуществить какую-то общую функцию. Некоторые же бактерии, как правило, нитчатой формы могут образовывать и многоклеточные организмы.

Как они передвигаются?

Есть бактерии, которые сами не в состоянии передвигаться, но есть и такие, которые снабжены специальными устройствами для передвижения. Одни бактерии передвигаются при помощи жгутиков, а другие умеют скользить. Каким образом бактерии скользят, пока не до конца понятно. Есть мнение, что бактерии выделяют специальную слизь, которая облегчает скольжение. А еще есть бактерии, которые умеют «нырять». Для того чтобы опуститься в глубину какой-либо жидкой среды, такой микроорганизм может менять свою плотность. Чтобы бактерия начала движение в каком-то направлении, она должна получить раздражение.

Питание

Есть бактерии, которые могут питаться лишь органическими соединениями, а есть такие, которые могут перерабатывать неорганику в органику и уже после этого использовать для собственных нужд. Энергию бактерии получают тремя способами: с использованием дыхания, брожения или фотосинтеза.

Размножение

По поводу размножения бактерий можно сказать, что он тоже не отличается однородностью. Есть бактерии, которые не делятся на полы и размножаются простым делением или почкованием. Некоторые цианобактерии обладают способностью к множественному делению, то есть за один прием они могут выдать до тысячи «новорожденных» бактерий. Есть и бактерии, которые размножаются половым способом. Конечно же, у них все это происходит очень примитивно. Но при этом две бактерии передают новой клетке свои генетические данные – это главная особенность полового размножения.

Бактерии, несомненно, заслуживают Вашего внимания не только потому, что вызывают множество болезней. Эти микроорганизмы были первыми живыми существами, которые населили нашу планету. История бактерий на Земле насчитывает почти четыре миллиарда лет! Самыми древними из существующих на сегодняшний день являются цианобактерии, они появились три с половиной миллиарда лет назад.

Испытать на себе полезные свойства бактерий Вы можете благодаря специалистам корпорации Тяньши, которые разработали для Вас

Бактерии представляют собой одноклеточные безъядерные микроорганизмы, относящиеся к классу прокариотов. На сегодняшний день существует более 10 тысяч изученных видов (предполагается что их около миллиона), многие из них являются патогенными и могут возбуждать различные заболевания у человека, животных и растений.

Для их размножения необходимо достаточное количество кислорода и оптимальная влажность. Размеры бактерий варьируются от десятых долей микрона до нескольких микронов, по форме они делятся на шаровидные (кокки), палочковидные, нитеобразные (спириллы), в виде изогнутых палочек (вибрионы).

Первые организмы, появившиеся миллиарды лет назад

(Бактерии и микробы под микроскопом )

Бактерии играют очень важную роль на нашей планете, являясь важным участником любого биологического круговорота веществ, основы существования всего живого на Земле. Большая часть как органических, так и неорганических соединений под влиянием бактерий существенно изменяются. Бактерии, появившиеся на нашей планете более 3,5 миллиарда лет назад, стояли у первоисточников основания живой оболочки планеты и до сих пор активно перерабатывают неживую и живую органику и вовлекают результаты обменного процесса в биологический круговорот.

(Строение бактерии )

Сапрофитные почвенные бактерии играют огромную роль в почвообразовательном процессе, именно они перерабатывают остатки растительных и животных организмов и помогают в образовании гумуса и перегноя, повышающих её плодородие. Наиболее важную роль в процессе повышения плодородия почвы играют азотофиксирующие клубеньковые бактерии-симбионты, «живущие» на корнях бобовые растений, благодаря им почва обогащается ценными азотными соединениями, необходимым для роста растений. Они улавливают азот из воздуха, связывают его и создают соединения в форме, доступной для растений.

Значение бактерий в круговороте веществ в природе

Бактерии обладают отличными санитарными качествами, они удаляют грязь в сточных водах, расщепляют органические вещества, превращая их в безвредную неорганику. Уникальные цианобактерии, зародившиеся в первозданных морях и океанах 2 миллиарда лет назад, были способны к процессу фотосинтеза, они поставляли в окружающую среду молекулярный кислород, и таким образом сформировали атмосферу Земли и создали озоновый слой, защищающий нашу планету от пагубного влияния ультрафиолетовых лучей. Многие полезные ископаемые создавались на протяжении многих тысяч лет под воздействием воздуха, температуры, воды и бактерий на биомассу.

Бактерии наиболее распространенные организмы на Земле, они определяют верхнюю и нижнюю границу биосферы, проникают повсюду и отличаются большой выносливостью. Если бы бактерий не было, умершие животные и растения не перерабатывались бы дальше, а просто накапливались в огромных количествах, без них биологический круговорот станет невозможным, и вещества не смогут вновь возвращаться в природу.

Бактерии - важное звено в трофических цепях питания, они выступают в роли редуцентов, раскладывая остатки умерших животных и растений, тем самым очищая Землю. Многие бактерии играют в организме млекопитающих роль симбионтов и помогают им разложить клетчатку, которую те не в состоянии переварить. Процесс жизнедеятельности бактерий — источник витамина К и витаминов группы В, играющих важную роль в процессе нормального функционирования их организмов.

Полезные и вредные бактерии

Большое количество болезнетворных бактерий могут приносить здоровью человека, домашних животных и культурных растений огромный вред, а именно вызывать такие инфекционные заболевания как дизентерию, туберкулез, холеру, бронхит, бруцеллез и сибирскую язву (животные), бактериоз (растения).

Существуют бактерии, приносящие человеку и его хозяйственной деятельности пользу. Люди научились использовать бактерии на промышленных производствах, изготовляя ацетон, этиловый и бутиловый спирт, уксусную кислоту, ферменты, гормоны, витамины, антибиотики, белково-витаминные препараты. Очищающая способность бактерий применяется на водочистных сооружениях, для очистки сточных вод и превращения органики в безвредные неорганические вещества. Современные достижения генных инженеров позволили получать такие лекарственные препараты как инсулин, интерферон из бактерии кишечной палочки, кормовой и пищевой белок из некоторых бактерий. В сельском хозяйстве используют специальные бактериальные удобрения, также с помощью бактерий фермеры борются с различными сорняками и вредными насекомыми.

(Бактерии любимое блюдо инфузории туфельки )

Бактерии участвуют в процессе дубления кожи, сушки табачных листьев, с их помощью изготовляют шелк, каучук, какао, кофе, замачивают коноплю, лен, выщелачивают металлы. Они участвуют в процессе изготовления лекарств, таких сильнейших антибиотиков как тетрациклин и стрептомицин. Без молочнокислых бактерий, вызывающих процесс брожения, невозможен процесс приготовления таких молочных продуктов как простокваша, ряженка, ацидофилин, сметана, масло, кефир, йогурт, творог. Также молочнокислые бактерии участвуют в процессе засолки огурцов, квашении капусты, силосовании кормов.



Понравилась статья? Поделитесь ей