Контакты

Химическая связь и строение молекул. Введение в общую химию

Основная функция телекоммуникационных сетей (ТКС) заключается в обеспечении информационного обмена между всеми абонентскими системами компьютерной сети. Обмен осуществляется по каналам связи, которые составляют один из основных компонентов телекоммуникационных сетей.

Каналом связи называют совокупность физической среды (линии связи) и аппаратуры передачи данных (АПД), осуществляющих передачу информационных сигналов от одного узла коммутации сети к другому либо между узлом коммутации и абонентской системой.

Таким образом , канал связи и физическая линия связи - это не одно и то же. В общем случае на основе одной линии связи может быть организовано несколько логических каналов путем временного, частотного, фазового и других видов разделения.

В компьютерных сетях используются телефонные, телеграфные, телевизионные, спутниковые сети связи. В качестве линий связи применяются проводные (воздушные), кабельные, радиоканалы наземной и спутниковой связи. Различие между ними определяется средой передачи данных. Физическая среда передачи данных может представлять собой кабель, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

В компьютерных сетях используются телефонные, телеграфные, телевизионные, спутниковые сети связи. В качестве линий связи применяются проводные (воздушные), кабельные, радиоканалы наземной и спутниковой связи. Различие между ними определяется средой передачи данных. Физическая среда передачи данных может представлять собой кабель, а также земную атмосферу или космическое пространство, через которые распространяются электромагнитные волны.

Проводные (воздушные) линии связи - это провода без изолирующих или экранирующих оплеток, проложенные между столбами и висящие в воздухе. Традиционно они служат для передачи телефонных и телеграфных сигналов, но при отсутствии других возможностей применяются для передачи компьютерных данных. Проводные линии связи отличаются небольшой пропускной способностью и малой помехозащищенностью, поэтому они быстро вытесняются кабельными линиями.

Кабельные линии включают кабель, состоящий из проводников с изоляцией в несколько слоев - электрической, электромагнитной, механической, и разъемы для присоединения к нему различного оборудования. В КС применяются в основном три типа кабеля: кабель на основе скрученных пар медных проводов (это витая пара в экранированном варианте, когда пара медных проводов обертывается в изоляционный экран, и неэкранированном, когда изоляционная обертка отсутствует), коаксиальный кабель (состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции) и волоконно-оптический кабель (состоит из тонких - в 5-60 микрон волокон, по которым распространяются световые сигналы).


Среди кабельных линий связи наилучшие показатели имеют световоды. Основные их преимущества: высокая пропускная способность (до 10 Гбит/с и выше), обусловленная использованием электромагнитных волн оптического диапазона; нечувствительность к внешним электромагнитным полям и отсутствие собственных электромагнитных излучений, низкая трудоемкость прокладки оптического кабеля; искро-, взрыво- и пожаробезопасность; повышенная устойчивость к агрессивным средам; небольшая удельная масса (отношение погонной массы к полосе пропускания); широкие области применения (создание магистралей коллективного доступа, систем связи ЭВМ с периферийными устройствами локальных сетей, в микропроцессорной технике и т.д.).

Недостатки волоконно-оптических линий связи : подключение к световоду дополнительных ЭВМ значительно ослабляет сигнал, необходимые для световодов высокоскоростные модемы пока еще дороги, световоды, соединяющие ЭВМ, должны снабжаться преобразователями электрических сигналов в световые и обратно.

Радиоканалы наземной и спутниковой связи образуются с помощью передатчика и приемника радиоволн. Различные типы радиоканалов отличаются используемым частотным диапазоном и дальностью передачи информации. Радиоканалы, работающие в диапазонах коротких, средних и длинных волн (КВ, СВ, ДВ), обеспечивают дальнюю связь, но при невысокой скорости передачи данных. Это радиоканалы, где используется амплитудная модуляция сигналов. Каналы, работающие на диапазонах ультракоротких волн (УКВ), являются более скоростными, для них характерна частотная модуляция сигналов. Сверхскоростными являются каналы, работающие на диапазонах сверхвысоких частот (СВЧ), т.е. свыше 4 ГГц. В диапазоне СВЧ сигналы не отражаются ионосферой Земли, поэтому для устойчивой связи требуется прямая видимость между передатчиком и приемником. По этой причине сигналы СВЧ используются либо в спутниковых каналах, либо в радиорелейных, где это условие выполняется.

Характеристики линий связи . К основным характеристикам линий связи относятся следующие: амплитудно-частотная характеристика, полоса пропускания, затухание, пропускная способность, помехоустойчивость, перекрестные наводки на ближнем конце линии, достоверность передачи данных, удельная стоимость.

Характеристики линии связи часто определяются путем анализа ее реакций на некоторые эталонные воздействия, в качестве которых используются синусоидальные колебания различных частот, поскольку они часто встречаются в технике и с их помощью можно представить любую функцию времени. Степень искажения синусоидальных сигналов линии связи оценивается с помощью амплитудно-частотной характеристики, полосы пропускания и затухания на определенной частоте.

Амплитудно-частотная характеристика (АЧХ) дает наиболее полное представление о линии связи, она показывает, как затухает амплитуда синусоиды на выходе линии по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала (вместо амплитуды сигнала часто используется его мощность). Следовательно, АЧХ позволяет определять форму выходного сигнала для любого входного сигнала. Однако получить АЧХ реальной линии связи весьма трудно, поэтому на практике вместо нее используются другие, упрощенные характеристики - полоса пропускания и затухание.

Полоса пропускания линии связи представляет собой непрерывный диапазон частот, в котором отношение амплитуды выходного сигнала ко входному превышает заранее заданный предел (обычно 0,5). Следовательно, полоса пропускания определяет диапазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Ширина полосы пропускания, в наибольшей степени влияющая на максимально возможную скорость передачи информации по линии связи, это разность между максимальной и минимальной частотами синусоидального сигнала в данной полосе пропускания. Полоса пропускания зависит от типа линии и ее протяженности.

Следует делать различия между шириной полосы пропускания и шириной спектра передаваемых информационных сигналов. Ширина спектра передаваемых сигналов это разность между максимальной и минимальной значимыми гармониками сигнала, т.е. теми гармониками, которые вносят основной вклад в результирующий сигнал. Если значимые гармоники сигнала попадают в полосу пропускания линии, то такой сигнал будет передаваться и приниматься приемником без искажений. В противном случае сигнал будет искажаться, приемник - ошибаться при распознавании информации, и, следовательно, информация не сможет передаваться с заданной пропускной способностью.

Затухание - это относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты.

Затухание А измеряется в децибелах (dB, дБ) и вычисляется по формуле:

A = 10?lg(P вых /P вх)

где Р вых, Р вх - мощность сигнала соответственно на выходе и на входе линии.

Для приблизительной оценки искажения передаваемых по линии сигналов достаточно знать затухание сигналов основной частоты, т.е. частоты, гармоника которой имеет наибольшую амплитуду и мощность. Более точная оценка возможна при знании затухания на нескольких частотах, близких к основной.

Пропускная способность линии связи - это ее характеристика, определяющая (как и ширина полосы пропускания) максимально возможную скорость передачи данных по линии. Она измеряется в битах в секунду (бит/с), а также в производных единицах (Кбит/с, Мбит/с, Гбит/с).

Пропускная способность линии связи зависит от ее характеристик (АЧХ, ширины полосы пропускания, затухания) и от спектра передаваемых сигналов, который, в свою очередь, зависит от выбранного способа физического или линейного кодирования (т.е. от способа представления дискретной информации в виде сигналов). Для одного способа кодирования линия может обладать одной пропускной способностью, а для другого - другой.

При кодировании обычно используется изменение какого-либо параметра периодического сигнала (например, синусоидальных колебаний) - частоты, амплитуды и фазы, синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, параметры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида. Если у принимаемой синусоиды не меняется ни один из ее параметров (амплитуда, частота или фаза), то она не несет никакой информации.

Количество изменений информационного параметра несущего периодического сигнала в секунду (для синусоиды это количество изменений амплитуды, частоты или фазы) измеряется в бодах. Тактом работы передатчика называют период времени между соседними изменениями информационного сигнала.

В общем случае пропускная способность линии в битах в секунду не совпадает с числом бод. В зависимости от способа кодирования она может быть выше, равна или ниже числа бод. Если, например, при данном способе кодирования единичное значение бита представляется импульсом положительной полярности, а нулевое значение - импульсом отрицательной полярности, то при передаче поочередно изменяющихся битов (серии одноименных битов отсутствуют) физический сигнал за время передачи каждого бита дважды изменяет свое состояние. Следовательно, при таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.

На пропускную способность линии влияет не только физическое, но и так называемое логическое кодирование, которое выполняется до физического кодирования и состоит в замене исходной последовательности бит информации новой последовательностью бит, несущей ту же информацию, но обладающей дополнительными свойствами (например, возможностью для приемной стороны обнаруживать ошибки в принятых данных или обеспечивать конфиденциальность передаваемых данных путем их шифрования). Логическое кодирование, как правило, сопровождается заменой исходной последовательности бит более длинной последовательностью, что негативно сказывается на времени передачи полезной информации.

Существует определенная связь между пропускной способностью линии и ее полосой пропускания. При фиксированном способе физического кодирования пропускная способность линии увеличивается с повышением частоты несущего периодического сигнала, так как это повышение сопровождается ростом информации, передаваемой в единицу времени. Но с повышением частоты этого сигнала увеличивается и ширина его спектра, который передается с искажениями, определяемыми полосой пропускания линии. Чем больше несоответствие между полосой пропускания линии и шириной спектра передаваемых информационных сигналов, тем больше подвергаются сигналы искажению и тем вероятнее ошибки в распознавании информации приемником. В итоге скорость передачи информации оказывается меньше, чем можно было предположить.

C=2F log 2 M, (4)

где М - количество различных состояний информационного параметра передаваемого сигнала.

В соотношении Найквиста, используемом также для определения максимально возможной пропускной способности лини связи, в явном виде не учитывается наличие шума на линии. Однако его влияние косвенно отражается в выборе количества состояний информационного сигнала. Например, для повышения пропускной способности линии можно было при кодировании данных использовать не 2 или 4 уровня, а 16. Но если амплитуда шума превышает разницу между соседними 16-ю уровнями, то приемник не сможет устойчиво распознавать передаваемые данные. Поэтому количество возможных состояний сигнала фактически ограничивается соотношением мощности сигнала и шума.

По формуле Найквиста определяется предельное значение пропускной способности канала для случая, когда количество состояний информационного сигнала уже выбрано с учетом возможностей их устойчивого распознавания приемником.

Помехоустойчивость линии связи - это ее способность уменьшать на внутренних проводниках уровень помех, создаваемых во внешней среде. Она зависит от типа используемой физической среды, а также от средств линии, экранирующих и подавляющих помехи. Наиболее помехоустойчивыми, малочувствительными ко внешнему электромагнитному излучению, являются волоконно-оптические линии, наименее помехоустойчивыми - радиолинии, промежуточное положение занимают кабельные линии. Уменьшение помех, обусловленных внешними электромагнитными излучениями, достигается экранизацией и скручиванием проводников.

Перекрестные наводки на ближнем конце линии - определяют помехоустойчивость кабеля к внутренним источникам помех. Обычно они оцениваются применительно к кабелю, состоящему из нескольких витых пар, когда взаимные наводки одной пары на другую могут достигать значительных величин и создавать внутренние помехи, соизмеримые с полезным сигналом.

Достоверность передачи данных (или интенсивность битовых ошибок) характеризует вероятность искажения для каждого передаваемого бита данных. Причинами искажения информационных сигналов являются помехи на линии, а также ограниченность полосы ее пропускания. Поэтому повышение достоверности передачи данных достигается повышением степени помехозащищенности линии, снижением уровня перекрестных наводок в кабеле, использованием более широкополосных линий связи.

Для обычных кабельных линий связи без дополнительных средств защиты от ошибок достоверность передачи данных составляет, как правило, 10 -4 -10 -6 . Это значит, что в среднем из 10 4 или 10 6 передаваемых бит будет искажено значение одного бита.

Аппаратура линий связи (аппаратура передачи данных - АПД) является пограничным оборудованием, непосредственно связывающим компьютеры с линией связи. Она входит в состав линии связи и обычно работает на физическом уровне, обеспечивая передачу и прием сигнала нужной формы и мощности. Примерами АПД являются модемы, адаптеры, аналого-цифровые и цифро-аналоговые преобразователи.

В состав АПД не включается оконечное оборудование данных (ООД) пользователя, которое вырабатывает данные для передачи по линии связи и подключается непосредственно к АПД. К ООД относится, например, маршрутизатор локальных сетей. Заметим, что разделение оборудования на классы АПД и ООД является достаточно условным.

На линиях связи большой протяженности используется промежуточная аппаратура, которая решает две основные задачи: повышение качества информационных сигналов (их формы, мощности, длительности) и создание постоянного составного канала (сквозного канала) связи между двумя абонентами сети. В ЛКС промежуточная аппаратура не используется, если протяженность физической среды (кабелей, радиоэфира) невысока, так что сигналы от одного сетевого адаптера к другому можно передавать без промежуточного восстановления их параметров.

В глобальных сетях обеспечивается качественная передача сигналов на сотни и тысячи километров. Поэтому через определенные расстояния устанавливаются усилители. Для создания между двумя абонентами сквозной линии используются мультиплексоры, демультиплексоры и коммутаторы.

Промежуточная аппаратура канала связи прозрачна для пользователя (он ее не замечает), хотя в действительности она образует сложную сеть, называемую первичной сетью и служащую основой для построения компьютерных, телефонных и других сетей.

Различают аналоговые и цифровые линии связи , в которых используются различные типы промежуточной аппаратуры. В аналоговых линиях промежуточная аппаратура предназначена для усиления аналоговых сигналов, имеющих непрерывный диапазон значений. В высокоскоростных аналоговых каналах реализуется техника частотного мультиплексирования, когда несколько низкоскоростных аналоговых абонентских каналов мультиплексируют в один высокоскоростной канал. В цифровых каналах связи, где информационные сигналы прямоугольной формы имеют конечное число состояний, промежуточная аппаратура улучшает форму сигналов и восстанавливает период их следования. Она обеспечивает образование высокоскоростных цифровых каналов, работая по принципу временного мультиплексирования каналов, когда каждому низкоскоростному каналу выделяется определенная доля времени высокоскоростного канала.

При передаче дискретных компьютерных данных по цифровым линиям связи протокол физического уровня определен, так как параметры передаваемых линией информационных сигналов стандартизованы, а при передаче по аналоговым линиям - не определен, поскольку информационные сигналы имеют произвольную форму и к способу представления единиц и нулей аппаратурой передачи данных никаких требований не предъявляется.

В сетях связи нашли применение следующие ре жимы передачи информации :

Симплексные, когда передатчик и приемник связываются одним каналом связи, по которому информация передается только в одном направлении (это характерно для телевизионных сетей связи);

Полудуплексные, когда два узла связи соединены также одним каналом, по которому информация передается попеременно то в одном направлении, то в противоположном (это характерно для информационно-справочных, запрос-ответных систем);

Дуплексные, когда два узла связи соединены двумя каналами (прямым каналом связи и обратным), по которым информация одновременно передается в противоположных направлениях. Дуплексные каналы применяются в системах с решающей и информационной обратной связью.

Коммутируемые и выделенные каналы связи . В ТСС различают выделенные (некоммутируемые) каналы связи и с коммутацией на время передачи информации по этим каналам.

При использовании выделенных каналов связи приемопередающая аппаратура узлов связи постоянно соединена между собой. Этим обеспечивается высокая степень готовности системы к передаче информации, более высокое качество связи, поддержка большого объема трафика. Из-за сравнительно больших расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается только при условии достаточно полной загрузки каналов.

Для коммутируемых каналов связи, создаваемых только на время передачи фиксированного объема информации, характерны высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика). Недостатки таких каналов: потери времени на коммутацию (на установление связи между абонентами), возможность блокировки из-за занятости отдельных участков линии связи, более низкое качество связи, большая стоимость при значительном объеме трафика.

В результате изучения данной темы вы узнаете:

  • Почему молекула воды полярная, углекислого газа – нет.
  • Какова максимальная валентность азота в соединениях.
  • Почему вода имеет аномально высокие температуры плавления и кипения.

В результате изучения данной темы вы научитесь:

  • Определять характер химической связи (ковалентная полярная и неполярная, ионная, водородная, металлическая) в различных соединениях.
  • Определять геометрическую форму молекул на основе анализа их электронного строения с привлечением представлений о гибридизации атомных орбиталей.
  • Прогнозировать свойства веществ на основе сведений о природе химической связи и типах кристаллических решеток.

Учебные вопросы:

5.1. Ковалентная связь

Химическая связь образуется при сближении двух или большего числа атомов, если в результате их взаимодействия происходит понижение полной энергии системы. Наиболее устойчивыми электронными конфигурациями внешних электронных оболочек атомов являются конфигурации атомов благородных газов, состоящие из двух или восьми электронов. Внешние электронные оболочки атомов других элементов содержат от одного до семи электронов, т.е. являются незавершенными. При образовании молекулы атомы стремятся приобрести устойчивую двухэлектронную или восьмиэлектронную оболочки. В образовании химической связи принимают участие валентные электроны атомов.

Ковалентной называется химическая связь между двумя атомами, которая образуется за счет электронных пар, принадлежащих одновременно этим двум атомам.

Существует два механизма образования ковалентной связи: обменный и донорно – акцепторный.

5.1.1. Обменный механизм образования ковалентной связи

Обменный механизм образования ковалентной связи реализуется за счет перекрывания электронных облаков электронов, принадлежащих различным атомам. Например, при сближении двух атомов водорода происходит перекрывание 1s электронных орбиталей. В результате возникает общая пара электронов, одновременно принадлежащая обоим атомам. При этом химическая связь образуется электронами, имеющими антипараллельные спины, рис. 5.1.

Рис. 5.1. Образование молекулы водорода из двух атомов Н

5.1.2. Донорно – акцепторный механизм образования ковалентной связи

При донорно – акцепторном механизме образования ковалентной связи связь также образуется с помощью электронных пар. Однако в этом случае однин атом (донор) предоставляет свою электронную пару, а другой атом (акцептор) участвует в образовании связи своей свободной орбиталью. Примером реализации донорно-акцепторной связи является образование иона аммония NH 4 + при взаимодействии аммиака NH 3 с катионом водорода H + .

В молекуле NH 3 три электронные пары образуют три связи N – H, четвертая, принадлежащая атому азота электронная пара является неподеленной. Эта электронная пара может дать связь с ионом водорода, который имеет свободную орбиталь. В результате получается ион аммония NH 4 + , рис. 5.2.

Рис. 5.2. Возникновение донорно-акцепторной связи при образовании иона аммония

Необходимо отметить, что существующие в ионе NH 4 + четыре ковалентных связи N – H равноценны. В ионе аммония невозможно выделить связь, образованную по донорно-акцепторному механизму.

5.1.3. Полярная и неполярная ковалентная связь

Если ковалентная связь образуется одинаковыми атомами, то электронная пара располагается на одинаковом расстоянии между ядрами этих атомов. Такая ковалентная связь называется неполярной. Примером молекул с неполярной ковалентной связью являются Н 2 , Cl 2 , О 2 , N 2 и др.

В случае полярной ковалентной связи общая электронная пара смещена к атому с большей электроотрицательностью. Этот тип связи реализуется в молекулах, образованных различными атомами. Ковалентная полярная связь имеет место в молекулах HCl, HBr, CO, NO и др. Например, образование полярной ковалентной связи в молекуле HCl можно представить схемой, рис. 5.3:

Рис. 5.3. Образование ковалентной полярной связи в молекуле НС1

В рассматриваемой молекуле электронная пара смещена к атому хлора, поскольку его электроотрицательность (2,83) больше, чем электроотрицательность атома водорода (2,1).

5.1.4. Дипольный момент и строение молекул

Мерой полярности связи является ее дипольный момент μ:

μ = е l ,

где е – заряд электрона, l – расстояние между центрами положительного и отрицательного зарядов.

Дипольный момент – это векторная величина. Понятия «дипольный момент связи» и «дипольный момент молекулы» совпадают только для двухатомных молекул. Дипольный момент молекулы равен векторной сумме дипольных моментов всех связей. Таким образом, дипольный момент многоатомной молекулы зависит от ее строения.

В линейной молекуле СО 2 , например, каждая из связей С–О полярна. Однако молекула СО 2 в целом неполярна, так как дипольные моменты связей компенсируют друг друга (рис. 5.4). Дипольный момент молекулы углекислого газа m = 0.

В угловой молекуле Н 2 О полярные связи Н–О расположены под углом 104,5 o . Векторная сумма дипольных моментов двух связей Н–О выражается диагональю параллелограмма (рис. 5.4). В результате дипольный момент молекулы воды m не равен нулю.

Рис. 5.4. Дипольные моменты молекул СО 2 и Н 2 О

5.1.5. Валентность элементов в соединениях с ковалентной связью

Валентность атомов определяется числом неспаренных электронов, участвующих в образовании общих электронных пар с электронами других атомов. Имеющие один неспаренный электрон на внешнем электронном слое атомы галогенов в молекулах F 2 , НCl, PBr 3 и CCl 4 одновалентны. Элементы подгруппы кислорода содержат два неспаренных электрона на внешнем слое, поэтому в таких соединениях как O 2 , Н 2 О, Н 2 S и SCl 2 они двухвалентны.

Поскольку помимо обычных ковалентных связей в молекулах может образовываться связь по донорно-акцепторному механизму, валентность атомов зависит также от наличия у них неподеленных электронных пар и свободных электронных орбиталей. Количественной мерой валентности является число химических связей, с помощью которых данный атом соединен с другими атомами.

Максимальная валентность элементов как правило не может превышать номер группы, в которой они находятся. Исключение составляют элементы побочной подгруппы первой группы Cu, Ag, Au, валентность которых в соединениях больше единицы. К валентным относятся прежде всего электроны внешних слоев, однако для элементов побочных подгрупп в образовании химической связи принимают участие и электроны предпоследних (предвнешних) слоев.

5.1.6. Валентность элементов в нормальном и возбужденном состояниях

Валентность большинства химических элементов зависит от того, находятся эти элементы в нормальном или возбужденном состоянии. Электронная конфигурация атома Li: 1s 2 2s 1 . Атом лития на внешнем уровне имеет один неспаренный электрон, т.е. литий одновалентен. Необходима очень большая затрата энергии, связанная с переходом 1s-электрона на 2р-орбиталь, чтобы получить трехвалентный литий. Эта затрата энергии настолько велика, что не компенсируется энергией, которая выделится при образовании химических связей. В связи с этим не существует соединений трехвалентного лития.

Конфигурация внешнего электронного слоя элементов подгруппы бериллия ns 2 . Это означает, что на внешнем электронном слое у этих элементов на орбитали ns ячейке находится два электрона с противоположными спинами. Элементы подгруппы бериллия не содержат неспаренных электронов, поэтому их валентность в нормальном состоянии равна нулю. В возбужденном состоянии электронная конфигурация элементов подгруппы бериллия ns 1 nр 1 , т.е. элементы образуют соединения, в которых они двухвалентны.

Валентные возможности атома бора

Рассмотрим электронную конфигурацию атома бора в основном состоянии: 1s 2 2s 2 2р 1 . Атом бора в основном состоянии содержит один неспаренный электрон (рис. 5.5), т.е. он одновалентен. Однако для бора не характерно образование соединений в которых он одновалентен. При возбуждении атома бора происходит переход одного 2s-электрона на 2р-орбиталь (рис. 5.5). Атом бора в возбужденном состоянии имеет 3 неспаренных электрона и может образовывать соединения, в которых его валентность равна трем.

Рис. 5.5. Валентные состояния атома бора в нормальном и возбужденном состояниях

Энергия, затраченная на переход атома в возбужденное состояние в пределах одного энергетического уровня, как правило, с избытком компенсируется энергией, выделяющейся при образовании дополнительных связей.

Благодаря наличию в атоме бора одной свободной 2р-орбитали, бор в соединениях может образовывать четвертую ковалентную связь, выступая в роли акцептора электронной пары. На рис.5.6 показано как происходит взаимодействие молекулы BF с ионом F – , в результате которого образуется ион – , в котором бор образует четыре ковалентных связи.

Рис. 5.6. Донорно-акцепторный механизм образования четвертой ковалентной связи у атома бора

Валентные возможности атома азота

Рассмотрим электронное строение атома азота (рис. 5.7).

Рис. 5.7. Распределение электронов на орбиталях атома азота

Из представленной схемы видно, что азот имеет три неспаренных электрона, он может образовывать три химические связи и его валентность равна трем. Переход атома азота в возбужденное состояние невозможен, поскольку второй энергетический уровень не содержит d–орбиталей. Вместе с тем атом азота может предоставить неподеленную электронную пару внешних электронов 2s 2 атому, имеющему свободную орбиталь (акцептору). В результате возникает четвертая химическая связь атома азота, как это имеет место, например, в ионе аммония (рис. 5.2). Таким образом, максимальная ковалентность (число образованных ковалентных связей) атома азота равна четырем. В своих соединениях азот, в отличие от других элементов пятой группы, не может быть пятивалентным.

Валентные возможности атомов фосфора, серы и галогенов

В отличие от атомов азота, кислорода и фтора, находящиеся в третьем периоде атомы фосфора, серы и хлора имеют свободные 3d-ячейки, на которые могут переходить электроны. При возбуждении атома фосфора (рис. 5.8), у него на внешнем электронном слое оказываются 5 неспаренных электронов. В результате в соединениях атом фосфора может быть не только трех-, но и пятивалентным.

Рис. 5.8. Распределение валентных электронов на орбиталях для атома фосфора, находящегося в возбужденном состоянии

В возбужденном состоянии сера помимо валентности, равной двум, проявляет также валентность, равную четырем и шести. При этом последовательно происходит распаривание 3р и 3s-электронов (рис. 5.9).

Рис. 5.9. Валентные возможности атома серы в возбужденном состоянии

В возбужденном состоянии для всех элементов главной подгруппы V группы, кроме фтора, возможно последовательное распаривание сначала р-, а затем и s-электронных пар. В результате эти элементы становятся трех-, пяти- и семивалентными (рис. 5.10).

Рис. 5.10. Валентные возможности атомов хлора, брома и иода в возбужденном состоянии

5.1.7. Длина, энергия и направленность ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия и направленность.

Длина ковалентной связи

Длина связи – это расстояние между ядрами атомов, образующими эту связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А 2 и В 2:

.

Сверху вниз по подгруппам периодической системы элементов длина химической связи возрастает, поскольку в этом направлении увеличивается радиусы атомов (табл. 5.1). С увеличением кратности связи ее длина уменьшается.

Таблица 5.1.

Длина некоторых химических связей

Химическая связь

Длина связи, пм

Химическая связь

Длина связи, пм

С – С


Энергия связи

Мерой прочности связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга. Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Для молекулы IСl 3 , например, Есвязи ≈40 , а для молекул N 2 и CO Есвязи ≈1000 кДж/моль.

Сверху вниз по подгруппам периодической системы элементов энергия химической связи уменьшается, поскольку в этом направлении увеличивается длина связи (табл. 5.1). С увеличением кратности связи ее энергия возрастает (табл. 5.2).

Таблица 5.2.

Энергий некоторых химических связей

Химическая связь

Энергия связи,

Химическая связь

Энергия связи,

С – С

Насыщаемость и направленность ковалентной связи

Важнейшими свойствами ковалентной связи является ее насыщаемость и направленность. Насыщаемость можно определить как способность атомов образовывать ограниченное число ковалентных связей. Так атом углерода может образовывать только четыре ковалентных связи, а атом кислорода – две. Максимальное число обычных ковалентных связей, которые может образовывать атом (без учета связей, образованных по донорно-акцепторному механизму) равно числу неспаренных электронов.

Ковалентные связи имеют пространственную направленность, поскольку перекрывание орбиталей при образовании одинарной связи происходит по линии, связывающей ядра атомов. Пространственное расположение электронных орбиталей молекулы обуславливают ее геометрию. Углы между химическими связями называют валентными углами.

Насыщаемость и направленность ковалентной связи отличает эту связь от ионной, которая в отличие от ковалентной связи является ненасыщенной и ненаправленной.

Пространственное строение молекул Н 2 O и NH 3

Направленность ковалентной связи рассмотрим на примере молекул Н 2 O и NH 3 .

Молекула H 2 O образуется из атома кислорода и двух атомов водорода. Атом кислорода имеет два неспаренных p-электрона, которые занимают две орбитали, расположенные под прямым углом друг к другу. Атомы водорода имеют неспаренные 1s-электроны. Угол между связями, образованными р-электронами, должен быть близок к углу между орбиталями р-электронов. Экспериментально, однако, найдено, что угол между связями О–Н в молекуле воды равен 104,50. Увеличение угла по сравнению с углом 90 o можно объяснить силами отталкивания, которые действует между атомами водорода, рис. 5.11. Таким образом, молекула Н 2 О имеет угловую форму.

В образовании молекулы NH 3 участвуют три неспаренных p-электрона атома азота, орбитали которых расположены в трех взаимно перпендикулярных направлениях. Следовательно, три связи N–H должны располагаться под углами друг к другу, близкими к 90° (рис. 5.11). Экспериментальное значение угла между связями в молекуле NH 3 равно 107,3°. Отличие значения углов между связями от теоретических обусловлено, как и в случае молекулы воды, взаимным отталкиванием атомов водорода. Кроме того, представленные схемы не учитывают возможность участия двух электронов на орбиталях 2s в образовании химических связей.

Рис. 5.11. Перекрывание электронных орбиталей при образовании химических связей в молекулах Н 2 O (а) и NH 3 (б)

Рассмотрим образование молекулы ВеС1 2 . Атом бериллия в возбужденном состоянии имеет два неспаренных электрона: 2s и 2p. Можно предположить, что атом бериллия должен образовывать две связи: одну связь, образованную s-электроном и одну связь, образованную р-электроном. Эти связи должны иметь различную энергию и различную длину. Молекула ВеС1 2 в таком случае должна быть не линейной, а уголковой. Опыт, однако, показывает, что молекула ВеС1 2 имеет линейное строение и обе химические связи в ней равноценны. Аналогичная ситуация наблюдается при рассмотрении строения молекул BCl 3 и CCl 4 – все связи в этих молекулах равноценны. Молекула ВС1 3 имеет плоское строение, СС1 4 – тетраэдрическое.

Для объяснения строения таких молекул, как ВеС1 2 , BCl 3 и CCl 4 , Полинг и Слейтер (США) ввели представление о гибридизации атомных орбиталей. Они предложили заменить несколько атомных орбиталей, не очень сильно отличающихся своей энергией, таким же числом равноценных орбиталей, называемых гибридными. Эти гибридные орбитали составляются из атомных в результате их линейной комбинации.

Согласно Л. Полингу при образовании химических связей атомом, имеющим электроны различного типа в одном слое и, следовательно, не очень сильно отличающиеся своей энергией (например, s и p) возможно изменение конфигурации орбиталей различных типов, при которой происходит их выравнивание по форме и энергии. В результате образуются гибридные орбитали, имеющие асимметричную форму и сильно вытянутые по одну сторону от ядра. Важно подчеркнуть, что модель гибридизации используется в том случае, когда в образовании связей участвуют электроны различного типа, например s и р.

5.1.8.2. Различные типы гибридизации атомных орбиталей

sp- гибридизация

Гибридизация одной s - и одной р - орбитали (sp - гибридизация) реализуется, например, при образовании хлорида бериллия. Как было показано выше, в возбужденном состоянии атом Be имеет два неспаренных электрона, один из которых занимает 2s-орбиталь, а другой – 2p-орбиталь. При образовании химической связи эти две различные орбитали трансформируются в две одинаковые гибридные орбитали, направленные под углом 180° друг к другу (рис. 5.12). Линейное расположение двух гибридных орбиталей отвечает минимальному их отталкиванию друг от друга. В результате молекула BeCl 2 имеет линейное строение – все три атома расположены на одной линии.

Рис. 5.12. Схема перекрывания электронных орбиталей при образовании молекулы BeCl 2

Строение молекулы ацетилена; сигма- и пи-связи

Рассмотрим схему перекрывания электронных орбиталей при образовании молекулы ацетилена . В молекуле ацетилена каждый атом углерода находится в sp–гибридном состоянии. Две sp–гибридные орбитали расположены под углом 1800 друг к другу; они образуют одну σ -связь между атомами углерода и две σ -связи с атомами водорода (рис. 5.13).

Рис. 5.13. Схема образования s -связей в молекуле ацетилена

σ -связью называют связь, образованную в результате перекрывания электронных орбиталей по линии, соединяющей ядра атомов.

Каждый атом углерода в молекуле ацетилена содержит еще по два р-электрона, которые не принимают участия в образовании σ -связей. Электронные облака этих электронов располагаются во взаимно перпендикулярных плоскостях и, перекрываясь друг с другом, образуют еще две π -связи между атомами углерода за счет бокового перекрывания негибридных р –облаков (рис. 5.14).

π -связь – это ковалентная химическая связь, образованная в результате увеличения электронной плотности по обе стороны от линии, соединяющей ядра атомов.

Рис. 5.14. Схема образования σ - и π -связей в молекуле ацетилена.

Таким образом, в молекуле ацетилена между атомами углерода образуется тройная связь, которая состоит из одной σ - связи и двух π -связей; σ -связи являются более прочными, чем π - связи.

sp2- гибридизация

Строение молекулы BCl 3 можно объяснить с позиций sp 2 - гибридизации . Находящийся в возбужденном состоянии атом бора на внешнем электронном слое содержит один s-электрон и два p-электрона, т.е. три неспаренных электрона. Эти три электронных облака можно преобразовать в три равноценных гибридных орбитали. Минимальному отталкиванию трех гибридных орбиталей друг от друга соответствует их расположение в одной плоскости под углом 120 o друг к другу (рис. 5.15). Таким образом, молекула BCl 3 имеет плоскую форму.

Рис. 5.15. Плоское строение молекулы BCl 3

sp 3 - гибридизация

Валентные орбитали атома углерода (s, р x , р y , р z) можно преобразовать в четыре равноценных гибридные орбитали, которые расположены в пространстве под углом 109,5 o друг к другу и направлены к вершинам тетраэдра, в центре которого находится ядро атома углерода (рис. 5.16).

Рис. 5.16. Тетраэдрическое строение молекулы метана

5.1.8.3. Гибридизация с участием неподеленных электронных пар

Модель гибридизации может использоваться для объяснения строения молекул, в которых помимо связывающих, имеются также и неподеленные электронные пары. В молекулах воды и аммиака общее число электронных пар центрального атома (О и N) равно четырем. При этом в молекуле воды имеются две, а в молекуле аммиака – одна неподеленная электронная пара. Образование химических связей в данных молекулах можно объяснить, предполагая, что неподеленные электронные пары также могут заполнять гибридные орбитали. Неподеленные электронные пары занимают в пространстве значительно больше места, чем связывающие. В результате отталкивания, которое возникает между неподеленными и связывающими электронными парами происходит уменьшение валентных углов в молекулах воды и аммиака, которые оказываются меньше, чем 109,5 o .

Рис. 5.17. sp 3 – гибридизация с участием неподеленных электронных пар в молекулах H 2 O (А) и NH 3 (Б)

5.1.8.4. Установление типа гибридизации и определение строения молекул

Для установления типа гибридизации, а, следовательно, и структуры молекул необходимо использовать следующие правила.

1. Тип гибридизации центрального атома, не содержащего неподеленных электронных пар, определяется числом сигма связей. Если таких связей две имеет место sp-гибридизация, три - sp 2 -гибридизация, четыре - sp 3 -гибридизация. Неподеленные электронные пары (в отсутствии связей, образованных по донорно-акцепторному механизму) отсутствуют в молекулах, образованных атомами бериллия, бора, углерода, кремния, т.е. у элементов главных подгрупп II - IV групп.

2. Если центральный атом содержит неподеленные электронные пары, то число гибридных орбиталей и тип гибридизации определяются суммой числа сигма-связей и числа неподеленных электронных пар. Гибридизация с участием неподеленных электронных пар имеет место в молекулах, образованных атомами азота, фосфора, кислорода, серы, т.е. элементов главных подгрупп V и VI групп.

3. Геометрическая форма молекул определяется типом гибридизации центрального атома (табл. 5.3).

Таблица 5.3.

Валентные углы, геометрическая форма молекул в зависимости от числа гибридных орбиталей и типа гибридизации центрального атома

5.2. Ионная связь

Ионная связь осуществляется путем электростатического притяжения между противоположно заряженными ионами. Эти ионы образуются в результате перехода электронов от одного атома к другому. Ионная связь образуется между атомами, имеющими большие различия электроотрицательностей (обычно больше 1,7 по шкале Полинга), например, между атомами щелочных металлов и галогенов.

Рассмотрим возникновение ионной связи на примере образования NaCl. Из электронных формул атомов Na 1s 2 2s 2 2p 6 3s 1 и Cl 1s 2 2s 2 2p 6 3s 2 3p 5 видно, что для завершения внешнего уровня атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один, чем отдать семь. В химических реакциях атом натрия отдает один электрон, а атом хлора принимает его. В результате электронные оболочки атомов натрия и хлора превращаются в устойчивые электронные оболочки благородных газов (электронная конфигурация катиона натрия Na + 1s 2 2s 2 2p 6 , а электронная конфигурация аниона хлора Cl – - 1s 2 2s 2 2p 6 3s 2 3p 6). Электростатическое взаимодействие ионов приводит к образованию молекулы NaCl.

Основные характеристики ионной связи и свойства ионных соединений

1. Ионная связь является прочной химической связью. Энергия этой связи составляет величины порядка 300 – 700 кДж/моль.

2. В отличие от ковалентной связи, ионная связь является ненаправленной , поскольку ион может притягивать к себе ионы противоположного знака в любом направлении.

3. В отличие от ковалентной связи, ионная связь является ненасыщенной , так как взаимодействие ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей.

4. В процессе образования молекул с ионной связью не происходит полной передачи электронов, поэтому стопроцентной ионной связи в природе не существует. В молекуле NaCl химическая связь лишь на 80% ионная.

5. Соединения с ионной связью – это твердые кристаллические вещества, имеющие высокие температуры плавления и кипения.

6. Большинство ионных соединений растворяются в воде. Растворы и расплавы ионных соединений проводят электрический ток.

5.3. Металлическая связь

Атомы металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов. Поскольку энергия ионизации атомов металлов невелика, валентные электроны слабо удерживаются в этих атомах. В результате в кристаллической решетке металлов появляются положительно заряженные ионы и свободные электроны. При этом катионы металла находятся в узлах кристаллической их решетки, а электроны свободно перемещаются в поле положительных центров образуя так называемый «электронный газ». Наличие между двумя катионами отрицательно заряженного электрона приводит тому, что каждый катион взаимодействует с этим электроном. Таким образом, металлическая связь – это связь между положительными ионами в кристаллах металлов, которая осуществляется путем притяжения электронов, свободно перемещающихся по всему кристаллу.

Поскольку валентные электроны в металле равномерно распределены по всему кристаллу металлическая связь, как и ионная, является ненаправленной связью. В отличие от ковалентной связи, металлическая связь является ненасыщенной связью. От ковалентной связи металлическая связь отличается также и прочностью. Энергия металлической связи примерно в три – четыре раза меньше энергии ковалентной связи.

Вследствие большой подвижности электронного газа металлы характеризуются высокой электро- и теплопроводностью.

5.4. Водородная связь

В молекулах соединениях HF, H 2 O, NH 3 существуют связи водорода с сильно электроотрицательным элементом (Н–F, Н–O, Н–N). Между молекулами таких соединений могут образовываться межмолекулярные водородные связи . В некоторых органических молекулах, содержащих связи Н–O, Н–N, могут возникать внутримолекулярные водородные связи .

Механизм образования водородной связи имеет частично электростатический, частично донорно – акцепторный характер. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором - атомы водорода, соединенные с этими атомами. Как и для ковалентной связи, для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь принято обозначать точками: Н ··· F. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры. Она характерна прежде всего для соединений фтора, а также кислорода, в меньшей степени азота, в еще меньшей степени для хлора и серы. Соответственно меняется и энергия водородной связи (табл. 5.4).

Таблица 5.4.

Средние значения энергий водородных связей

Межмолекулярная и внутримолекулярная водородная связь

Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты. Например, образование димера муравьиной кислоты можно представить следующей схемой (рис. 5.18).

Рис. 5.18. Образование межмолекулярных водородных связей в муравьиной кислоте

В воде могут возникать длинные цепи ассоциатов (Н 2 О) n (рис. 5.19).

Рис. 5.19. Образование цепи ассоциатов в жидкой воде за счет межмолекулярных водородных связей

Каждая молекула Н 2 О может образовать четыре водородных связи, а молекула HF – только две.

Водородные связи могут возникать как между различными молекулами (межмолекулярная водородная связь), так и внутри молекулы (внутримолекулярная водородная связь). Примеры образования внутримолекулярной связи для некоторых органических веществ представлены на рис. 5.20.

Рис. 5.20. Образование внутримолекулярной водородной связи в молекулах различных органических соединений

Влияние водородной связи на свойства веществ

Наиболее удобным индикатором существования межмолекулярной водородной связи является температура кипения вещества. Более высокая температура кипения воды (100 o C по сравнению с водородными соединениями элементов подгруппы кислорода (H 2 S, H 2 Se, H 2 Te) объясняется наличием водородных связей: на разрушение межмолекулярных водородных связей в воде необходимо затратить дополнительную энергию.

Водородная связь существенным образом может влиять на структуру и свойства веществ. Существование межмолекулярной водородной связи повышает температуры плавления и кипения веществ. Наличие внутримолекулярной водородной связи приводит к тому, что молекула дезоксирибонуклеиновой кислоты (ДНК) оказывается свернутой в воде двойной спирали.

Водородная связь также играет важную роль в процессах растворения, поскольку растворимость зависит и от способности соединения давать водородные связи с растворителем. В результате содержащие ОН-группы такие вещества, как сахар, глюкоза, спирты, карбоновые кислоты, как правило, хорошо растворимы в воде.

5.5. Типы кристаллических решеток

Твердые вещества, как правило, имеют кристаллическое строение. Частицы, из которых состоят кристаллы (атомы, ионы или молекулы) располагаются в строго определенных точках пространства, образуя кристаллическую решетку. Кристаллическая решетка состоит из элементарных ячеек, которые сохраняют особенности структуры, характерные для данной решетки. Точки, в которых находятся частицы, называются узлами кристаллической решетки . В зависимости от вида частиц, находящихся в узлах решетки и от характера связи между ними различают 4 типа кристаллических решеток.

5.5.1. Атомная кристаллическая решетка

В узлах атомных кристаллических решеток находятся атомы, соединенные между собой ковалентными связями. К веществам, имеющим атомную решетку, относятся алмаз, кремний, карбиды, силициды и т.д. В структуре атомного кристалла невозможно выделить отдельные молекулы, весь кристалл рассматривается как одна гигантская молекула. Структура алмаза показана на рис. 5.21. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Вследствие того, что ковалентные связи прочные, все вещества, имеющие атомные решетки, являются тугоплавкими, твердыми и малолетучими. Они мало растворимы в воде.

Рис. 5.21. Кристаллическая решетка алмаза

5.5.2. Молекулярная кристаллическая решетка

В узлах молекулярных кристаллических решеток находятся молекулы, связанные между собой слабыми межмолекуляриыми силами. Поэтому вещества с молекулярной решеткой имеют малую твердость, они легкоплавки, характеризуются значительной летучестью, мало растворимы в воде, их растворы, как правило, не проводят электрический ток. Веществ c молекулярной кристаллической решеткой известно очень много. Это твердые водород, хлор, оксид углерода(IV) и другие вещества, которые при обычной температуре находятся в газообразном состоянии. Большинство кристаллических органических соединений имеют молекулярную решетку.

5.5.3. Ионная кристаллическая решетка

Кристаллические решетки, в узлах которых находятся ионы, называются ионными . Их образуют вещества с ионной связью, например, галогениды щелочных металлов. В ионных кристаллах нельзя выделить отдельные молекулы, весь кристалл можно рассматривать как одну макромолекулу. Связи между ионами прочные, поэтому вещества с ионной решеткой обладают малой летучестью, высокими температурами плавления и кипения. Кристаллическая решетка хлорида натрия представлена на рис. 5.22.

Рис. 5.22. Кристаллическая решетка хлорида натрия

На этом рисунке светлые шары – ионы Na + , темные – ионы Сl – . Слева на рис. 5.22 показана элементарная ячейка NaCI.

5.5.4. Металлическая кристаллическая решетка

Металлы в твердом состоянии образуют металлические кристаллические решетки. В узлах таких решеток находятся положительные ионы металлов, а валентные электроны свободно перемещаются между ними. Электроны электростатически притягивают катионы, тем самым придавая устойчивость металлической решетке. Такое строение решетки обусловливает высокую теплопроводность, электропроводность и пластичность металлов - при механическом деформировании не происходит разрыва связей и разрушения кристалла, поскольку составляющие его ионы как бы плавают в облаке электронного газа. На рис. 5.23 представлена кристаллическая решетка натрия.

Рис. 5.23. Кристаллическая решетка натрия

Ионная связь

(использованы материалы сайта http://www.hemi.nsu.ru/ucheb138.htm)

Ионная связь осуществляется путем электростатического притяжения между противоположно заряженными ионами. Эти ионы образуются в результате перехода электронов от одного атома к другому. Ионная связь образуется между атомами, имеющими большие различия электроотрицательностей (обычно больше 1,7 по шкале Полинга), например, между атомами щелочных металлов и галогенов.

Рассмотрим возникновение ионной связи на примере образования NaCl.

Из электронных формул атомов

Na 1s 2 2s 2 2p 6 3s 1 и

Cl 1s 2 2s 2 2p 6 3s 2 3p 5

видно, что для завершения внешнего уровня атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один, чем отдать семь. В химических реакциях атом натрия отдает один электрон, а атом хлора принимает его. В результате электронные оболочки атомов натрия и хлора превращаются в устойчивые электронные оболочки благородных газов (электронная конфигурация катиона натрия

Na + 1s 2 2s 2 2p 6 ,

а электронная конфигурация аниона хлора

Cl – - 1s 2 2s 2 2p 6 3s 2 3p 6).

Электростатическое взаимодействие ионов приводит к образованию молекулы NaCl.

Характер химической связи часто находит отражение в агрегатном состоянии и физических свойствах вещества. Такие ионные соединения, как хлорид натрия NaCl твердые и тугоплавкие потому, что между зарядами их ионов "+" и "–" существуют мощные силы электростатического притяжения.

Отрицательно заряженный ион хлора притягивает не только "свой" ион Na+, но и другие ионы натрия вокруг себя. Это приводит к тому, что около любого из ионов находится не один ион с противоположным знаком, а несколько.

Строение кристалла поваренной соли NaCl.

Фактически, около каждого иона хлора располагается 6 ионов натрия, а около каждого иона натрия - 6 ионов хлора. Такая упорядоченная упаковка ионов называется ионным кристаллом. Если в кристалле выделить отдельный атом хлора, то среди окружающих его атомов натрия уже невозможно найти тот, с которым хлор вступал в реакцию.

Притянутые друг к другу электростатическими силами, ионы крайне неохотно меняют свое местоположение под влиянием внешнего усилия или повышения температуры. Но если хлорид натрия расплавить и продолжать нагревать в вакууме, то он испаряется, образуя двухатомные молекулы NaCl . Это говорит о том, что силы ковалентного связывания никогда не выключаются полностью.

Основные характеристики ионной связи и свойства ионных соединений

1. Ионная связь является прочной химической связью. Энергия этой связи составляет величины порядка 300 – 700 кДж/моль.

2. В отличие от ковалентной связи, ионная связь является ненаправленной, поскольку ион может притягивать к себе ионы противоположного знака в любом направлении.

3. В отличие от ковалентной связи, ионная связь является ненасыщенной, так как взаимодействие ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей.

4. В процессе образования молекул с ионной связью не происходит полной передачи электронов, поэтому стопроцентной ионной связи в природе не существует. В молекуле NaCl химическая связь лишь на 80% ионная.

5. Соединения с ионной связью – это твердые кристаллические вещества, имеющие высокие температуры плавления и кипения.

6. Большинство ионных соединений растворяются в воде. Растворы и расплавы ионных соединений проводят электрический ток.

Металлическая связь

По-другому устроены металлические кристаллы. Если рассмотреть кусочек металлического натрия, то обнаружится, что внешне он сильно отличается от поваренной соли. Натрий - мягкий металл, легко режется ножом, расплющивается молотком, его можно без труда расплавить в чашечке на спиртовке (температура плавления 97,8 о С). В кристалле натрия каждый атом окружен восемью другими такими же атомами.

Строение кристалла металлического Na.

Из рисунка видно, что атом Na в центре куба имеет 8 ближайших соседей. Но это же можно сказать и о любом другом атоме в кристалле, поскольку все они одинаковы. Кристалл состоит из "бесконечно" повторяющихся фрагментов, изображенных на этом рисунке.

Атомы металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов. Поскольку энергия ионизации атомов металлов невелика, валентные электроны слабо удерживаются в этих атомах. В результате в кристаллической решетке металлов появляются положительно заряженные ионы и свободные электроны. При этом катионы металла находятся в узлах кристаллической решетки, а электроны свободно перемещаются в поле положительных центров образуя так называемый «электронный газ».

Наличие между двумя катионами отрицательно заряженного электрона приводит тому, что каждый катион взаимодействует с этим электроном.

Таким образом, металлическая связь – это связь между положительными ионами в кристаллах металлов, которая осуществляется путем притяжения электронов, свободно перемещающихся по всему кристаллу.

Поскольку валентные электроны в металле равномерно распределены по всему кристаллу металлическая связь, как и ионная, является ненаправленной связью. В отличие от ковалентной связи, металлическая связь является ненасыщенной связью. От ковалентной связи металлическая связь отличается также и прочностью. Энергия металлической связи примерно в три – четыре раза меньше энергии ковалентной связи.

Вследствие большой подвижности электронного газа металлы характеризуются высокой электро- и теплопроводностью.

Металлический кристалл выглядит достаточно простым, но на самом деле его электронное устройство сложнее, чем у кристаллов ионных солей. На внешней электронной оболочке элементов-металлов недостаточно электронов для образования полноценной "октетной" ковалентной или ионной связи. Поэтому в газообразном состоянии большинство металлов состоит из одноатомных молекул, (т.е. отдельных, не связанных между собой атомов). Типичный пример - пары ртути. Таким образом, металлическая связь между атомами металлов возникает только в жидком и твердом агрегатном состоянии.

Описать металлическую связь можно следующим образом: часть атомов металла в образующемся кристалле отдают в пространство между атомами свои валентные электроны (у натрия это...3s1), превращаясь в ионы. Поскольку все атомы металла в кристалле одинаковы, каждый из них имеет равные с другими шансы потерять валентный электрон.

Иными словами, переход электронов между нейтральными и ионизированными атомами металла происходит без затрат энергии. Часть электронов при этом всегда оказывается в пространстве между атомами в виде "электронного газа".

Эти свободные электроны, во-первых, удерживают атомы металла на определенном равновесном расстоянии друг от друга.

Во-вторых, они придают металлам характерный "металлический блеск" (свободные электроны могут взаимодействовать с квантами света).

В-третьих, свободные электроны обеспечивают металлам хорошую электропроводность. Высокая теплопроводность металлов тоже объясняется наличием свободных электронов в межатомном пространстве - они легко "откликаются" на изменения энергии и способствуют ее быстрому переносу в кристалле.

Упрощенная модель электронного строения металлического кристалла.

******** На примере металла натрия рассмотрим природу металлической связи с точки зрения представлений об атомных орбиталях. У атома натрия, как и у многих других металлов, имеется недостаток валентных электронов, зато имеются свободные валентные орбитали. Единственный 3s-электрон натрия способен перемещаться на любую из свободных и близких по энергии соседних орбиталей. При сближении атомов в кристалле внешние орбитали соседних атомов перекрываются, благодаря чему отданные электроны свободно перемещаются по всему кристаллу.

Однако "электронный газ" вовсе не беспорядочен, как может показаться. Свободные электроны в металлическом кристалле находятся на перекрывающихся орбиталях и в какой-то мере обобществляются, образуя подобие ковалентных связей. У натрия, калия, рубидия и других металлических s-элементов обобществленных электронов просто мало, поэтому их кристаллы непрочные и легкоплавкие. С увеличением числа валентных электронов прочность металлов, как правило, возрастает.

Таким образом, металлическую связь склонны образовывать элементы, атомы которых на внешних оболочках имеют мало валентных электронов. Эти валентные электроны, осуществляющие металлическую связь, обобществлены настолько, что могут перемещаться по всему металлическому кристаллу и обеспечивают высокую электропроводность металла.

Кристалл NaCl не проводит электрический ток, потому что в пространстве между ионами нет свободных электронов. Все электроны, отданные атомами натрия, прочно удерживают около себя ионы хлора. В этом одно из существенных отличий ионных кристаллов от металлических.

То, что вы теперь знаете о металлической связи, позволяет объяснить и высокую ковкость (пластичность) большинства металлов. Металл можно расплющить в тонкий лист, вытянуть в проволоку. Дело в том, что отдельные слои из атомов в кристалле металла могут относительно легко скользить один по другому: подвижный "электронный газ" постоянно смягчает перемещение отдельных положительных ионов, экранируя их друг от друга.

Разумеется, ничего подобного нельзя сделать с поваренной солью, хотя соль - тоже кристаллическое вещество. В ионных кристаллах валентные электроны прочно связаны с ядром атома. Сдвиг одного слоя ионов относительно другого приводит к сближению ионов одинакового заряда и вызывает сильное отталкивание между ними, в результате чего происходит разрушение кристалла (NaCl - хрупкое вещество).


Сдвиг слоев ионного кристалла вызывает появление больших сил отталкивания между одноименными ионами и разрушение кристалла.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества

Электроотрицательность - способность атомов смещать в свою сторону электроны при образовании химической связи. Это понятие было введено американским химиком Л. Полингом (1932 г.). Электроотрицательность характеризует способность атома данного элемента притягивать к себе общую электронную пару в молекуле. Величины электроотрицательности, определенные различными способами, отличаются друг от друга. В учебной практике чаще всего пользуются не абсолютными, а относительными значениями электроотрицательности. Наиболее распространенной является шкала, в которой электроотрицательности всех элементов сравниваются с электроотрицательностью лития , принятой за единицу.

Среди элементов групп IA - VIIA:

электроотрицательность с увеличением порядкового номера, как правило, в периодах увеличивается («слева направо»), а в группах - уменьшается («сверху вниз»).

Закономерности изменения электроотрицательности среди элементов d-блока имеют значительно более сложный характер.

Элементы с высокой электроотрицательностью, атомы которых имеют большое сродство к электрону и высокую энергию ионизации, т. е. склонные к присоединению электрона или смещению пары связывающих электронов в свою сторону, называются неметаллами.

К ним относятся: водород , углерод , азот , фосфор , кислород , сера , селен , фтор , хлор , бром и иод . По ряду признаков к неметаллам относят также особняком стоящую группу благородных газов (гелий -радон).

К металлам относится большинство элементов Периодической системы.

Для металлов характерны низкая электроотрицательность, т. е. низкие значения энергии ионизации и сродства к электрону. Атомы металлов либо отдают электроны атомам неметаллов, либо смешают от себя пары связывающих электронов. Металлы отличаются характерным блеском, высокой электрической проводимостью и хорошей теплопроводностью. Они в большинстве своем обладают прочностью и ковкостью.

Такой набор физических свойств, отличающих металлы от неметаллов, объясняется особым типом связи, существующей в металлах. Все металлы имеют четко выраженную кристаллическую решетку. В ее узлах наряду с атомами находятся катионы металлов, т.е. атомы, потерявшие свои электроны. Эти электроны образуют обобществленное электронное облако, так называемый электронный газ. Эти электроны находятся в силовом поле многих ядер. Такая связь называется металлической. Свободная миграция электронов по объему кристалла и обусловливает особые физические свойства металлов.

К металлам относятся все d и f-элементы. Если из Периодической системы мысленно выделить только блоки s- и p-элементов, т. е. элементы группы А и провести диагональ из левого верхнего угла в правый нижний угол, то окажется, что неметаллические элементы располагаются в правой стороне от этой диагонали, а металлические - в левой. К диагонали примыкают элементы, которые нельзя отнести однозначно ни к металлам, ни к неметаллам. К этим промежуточным по свойствам элементам относятся: бор , кремний , германий , мышьяк , сурьма , селен , полоний и астат .

Представления о ковалентной и ионной связи сыграли важную роль в развитии представлений о строении вещества, однако создание новых физико-химических методов исследования тонкой структуры вещества и их использование показали, что феномен химической связи значительно сложнее. В настоящее время считается, что любая гетероатомная связь является одновременно и ковалентной, и ионной, но в разных соотношениях. Таким образом вводится понятие о ковалентной и ионной составляющих гетероатомной связи. Чем больше разница в электроотрицательности связывающихся атомов, тем больше полярность связи. При разнице больше двух единиц преобладающей практически всегда является ионная составляющая. Сравним два оксида: оксид натрия Na 2 O и оксид хлора(VII) Cl 2 O 7 . В оксиде натрия частичный заряд на атоме кислорода составляет -0,81, а в оксиде хлора -0,02. Это фактически означает, что связь Na-O на 81% является ионной и на 19% - ковалентной. Ионная составляющая связи Cl-O равна только 2%.

Список использованной литературы

  1. Попков В. А. , Пузаков С. А. Общая химия: учебник. - М.: ГЭОТАР-Медия, 2010. - 976 с.: ISBN 978-5-9704-1570-2. [с. 35-37]
  2. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.

Почему атомы могут соединяться друг с другом и образовывать молекулы? Какова причина возможного существования веществ, в состав которых входят атомы совершенно разных химических элементов? Это глобальные вопросы, затрагивающие основополагающие понятия современной физической и химической науки. Ответить на них можно, имея представление об электронном строении атомов и зная характеристики ковалентной связи, являющейся базовой основой для большинства классов соединений. Цель нашей статьи - ознакомиться с механизмами образования различных типов химической связи и соединений, содержащих их в своих молекулах.

Электронное строение атома

Электронейтральные частицы материи, являющиеся ее структурными элементами, имеют строение, зеркально отражающее устройство Солнечной системы. Как планеты вращаются вокруг центральной звезды - Солнца, так и электроны в атоме движутся вокруг положительно заряженного ядра. Для характеристики ковалентной связи значимыми будут электроны, располагающиеся на последнем энергетическом уровне и наиболее удаленные от ядра. Так как их связь с центром собственного атома минимальна, они способны легко притягиваться ядрами других атомов. Это очень важно для возникновения межатомных взаимодействий, приводящих к образованию молекул. Почему же именно молекулярная форма является основным видом существования материи на нашей планете? Давайте разберемся.

Основное свойство атомов

Способность электронейтральных частиц к взаимодействию, приводящая к выигрышу в энергии, - их важнейшая особенность. Ведь в обычных условиях молекулярное состояние вещества более стойкое, чем атомное. Основные положения современного атомно-молекулярного учения объясняют как принципы образования молекул, так и характеристики ковалентной связи. Напомним, что на атома может находиться от 1 до 8 электронов, в последнем случае слой будет завершенным, а значит, очень устойчивым. Такую структуру внешнего уровня имеют атомы благородных газов: аргона, криптона, ксенона - инертных элементов, завершающих каждый период в системе Д. И. Менделеева. Исключением здесь будет гелий, у которого на последнем уровне находится не 8, а только 2 электрона. Причина проста: в первом периоде - всего два элемента, атомы которых имеют единственный электронный слой. У всех остальных химических элементов на последнем, незавершенном слое располагается от 1 до 7 электронов. В процессе взаимодействия между собой атомы будут стремиться заполниться электронами до октета и восстановить конфигурацию атома инертного элемента. Такое состояние может быть достигнуто двумя путями: потерей собственных или принятием чужих отрицательно заряженных частиц. Эти формы взаимодействия объясняют, как определить, какая связь - ионная или ковалентная - возникнет между вступающими в реакцию атомами.

Механизмы образования стойкой электронной конфигурации

Представим, что в реакцию соединения вступают два простых вещества: металлический натрий и газообразный хлор. Образуется вещество класса солей - хлорид натрия. Оно имеет ионный тип химической связи. Почему и как она возникла? Снова обратимся к строению атомов исходных веществ. У натрия на последнем слое находится всего один электрон, слабо связанный с ядром вследствие большого радиуса атома. Энергия ионизации у всех щелочных металлов, к которым относится и натрий, мала. Поэтому электрон внешнего уровня покидает энергетический уровень, притягивается ядром атома хлора и остается в его пространстве. Это создает прецедент перехода атома Cl в форму отрицательно заряженного иона. Теперь мы имеем дело уже не с электронейтральными частицами, а с заряженными катионами натрия и анионами хлора. В соответствии с законами физики между ними возникают силы электростатического притяжения, и соединение образует ионную кристаллическую решетку. Рассмотренный нами механизм формирования ионного типа химической связи поможет более четко выяснить специфику и основные характеристики ковалентной связи.

Общие электронные пары

Если ионная связь возникает между атомами элементов, сильно отличающихся электроотрицательностью, т. е. металлами и неметаллами, то ковалентный тип появляется при взаимодействии атомов как одного и того же, так и разных неметаллических элементов. В первом случае принято говорить о неполярном, а в другом - о полярном виде ковалентной связи. Механизм их образования общий: каждый из атомов частично отдает в общее пользование электроны, которые объединяются попарно. А вот пространственное расположение электронных пар относительно ядер атомов будет неодинаковым. По этому признаку и различают типы ковалентной связи - неполярную и полярную. Наиболее часто в химических соединениях, состоящих из атомов неметаллических элементов, встречаются пары, состоящие из электронов с противоположными спинами, т. е. вращающихся вокруг своих ядер в противоположные стороны. Так как движение отрицательно заряженных частиц в пространстве ведет к образованию электронных облаков, что в конечном счете заканчивается взаимным их перекрыванием. Каковы последствия этого процесса для атомов и к чему он приводит?

Физические свойства ковалентной связи

Оказывается, что между центрами двух взаимодействующих атомов возникает двухэлектронное облако, имеющее большую плотность. Усиливаются электростатические силы притяжения между самим отрицательно заряженным облаком и ядрами атомов. Высвобождается порция энергии и уменьшаются расстояния между атомными центрами. Например, в начале образования молекулы H 2 расстояние между ядрами водородных атомов составляет 1,06 А, после перекрывания облаков и образования общей электронной пары - 0,74 А. Примеры ковалентной связи, формирующейся по вышеописанному механизму, можно встретить как среди простых, так и среди сложных неорганических веществ. Ее главная отличительная черта - наличие общих электронных пар. В итоге после возникновения ковалентной связи между атомами, например, водорода каждый из них приобретает электронную конфигурацию инертного гелия, и образовавшаяся молекула имеет устойчивую структуру.

Пространственная форма молекулы

Еще одно очень важное физическое свойство ковалентной связи - это направленность. Он нее зависит пространственная конфигурация молекулы вещества. Например, при перекрывании двух электронов со сферической формой облака вид молекулы линейный (хлороводород или бромоводород). Форма молекул воды, у которой гибридизируются s- и p- облака - угловая, а очень прочные частицы газообразного азота имеют вид пирамиды.

Строение простых веществ - неметаллов

Выяснив, какую связь называют ковалентной, какие признаки она имеет, теперь самое время разобраться с ее разновидностями. Если во взаимодействие между собой вступают атомы одного и того же неметалла - хлора, азота, кислорода, брома и т. д., то формируются соответствующие простые вещества. Их общие электронные пары располагаются на одинаковом расстоянии от центров атомов, не смещаясь. Для соединений с неполярным видом ковалентной связи присущи такие признаки: низкие температуры кипения и плавления, нерастворимость в воде, диэлектрические свойства. Далее мы выясним, для каких веществ характерна ковалентная связь, при которой происходит смещение общих электронных пар.

Электроотрицательность и ее влияние на тип химической связи

Свойство определенного элемента притягивать к себе электроны от атома другого элемента в химии называют электроотрицательностью. Шкалу величин данного параметра, предложенную Л. Полингом, можно встретить во всех учебниках по неорганической и общей химии. Наибольшее его значение - 4,1 эВ - имеет фтор, меньшее - другие активные неметаллы, а наименьший показатель характерен для щелочных металлов. Если между собой реагируют элементы, отличающиеся своей электроотрицательностью, то неизбежно один, более активный, будет притягивать к своему ядру отрицательно заряженные частицы атома более пассивного элемента. Таким образом, физические свойства ковалентной связи напрямую зависят от способности элементов отдавать электроны в общее пользование. Образующиеся при этом общие пары уже не располагаются симметрично относительно ядер, а смещаются в сторону более активного элемента.

Особенности соединений с полярной связью

К веществам, в молекулах которых совместные электронные пары несимметричны относительно ядер атомов, можно отнести галогеноводороды, кислоты, соединения халькогенов с водородом и кислотные оксиды. Это сульфатная и нитратная кислоты, оксиды серы и фосфора, сероводород, и т. д. Например, молекула хлороводорода содержит одну общую электронную пару, образованную неспаренными электронами водорода и хлора. Она смещена ближе к центру атома Cl, являющегося более электроотрицательным элементом. Все вещества с полярной связью в водных растворах диссоциируют на ионы и проводят электрический ток. Соединения, имеющие которых мы привели, имеют также более высокие температуры плавления и кипения по сравнению с простыми веществами-неметаллами.

Способы разрыва химических связей

В органической химии предельных углеводородов с галогенами идут по радикальному механизму. Смесь метана и хлора на свету и при обычной температуре реагирует таким образом, что молекулы хлора начинают расщепляться на частицы, несущие неспаренные электроны. Иначе говоря, наблюдается разрушение общей электронной пары и образование очень активных радикалов -Cl. Они способны так воздействовать на молекулы метана, что у тех происходит разрыв ковалентной связи между атомами углерода и водорода. Образуется активная частица -H, а свободная валентность атома углерода принимает радикал хлора, и первым продуктом реакции становится хлорметан. Такой механизм расщепления молекул называется гомолитическим. Если же общая пара электронов полностью переходит во владение к одному из атомов, то говорят о гетеролитическом механизме, характерном для реакций, проходящих в водных растворах. В этом случае полярные молекулы воды будут усиливать скорость разрушения химических связей растворяемого соединения.

Двойные и тройные связи

Подавляющее большинство органических веществ и некоторые неорганические соединения содержат в своих молекулах не одну, а несколько общих электронных пар. Кратность ковалентной связи уменьшает расстояние между атомами и увеличивает стабильность соединений. О них принято говорить как о химически стойких. Например, в молекуле азота имеется три пары электронов, они обозначаются в структурной формуле тремя черточками и обусловливают ее прочность. Простое вещество азот химически инертен и может реагировать с другими соединениями, например с водородом, кислородом или металлами только при нагревании или повышенном давлении, а также в присутствии катализаторов.

Двойные и тройные связи присущи таким классам органических соединений, как непредельные диеновые углеводороды, а также вещества ряда этилена или ацетилена. Кратные связи обусловливают основные химические свойства: реакции присоединения и полимеризации, идущие в местах их разрыва.

В нашей статье мы дали общую характеристику ковалентной связи и рассмотрели ее основные виды.



Понравилась статья? Поделитесь ей