Контакты

Центральные и периферические хеморецепторы дыхания. Роль хеморецепторов в регуляции дыхания. Влияние газового состава, pН крови, и цереброспинальной жидкости на смену дыхательных фаз и вентиляцию легких. Особенности регуляции дыхания у детей. В сосудистой

Установите правильную последовательность процессов нормальных вдоха и выдоха у человека, начиная с повышения концентрации СО 2 в крови.

Запишите в таблицу соответствующую последовательность цифр.

1) сокращение диафрагмы

2) повышение концентрации кислорода

3) повышение концентрации СО 2

4) возбуждение хеморецепторов продолговатого мозга

6) расслабление диафрагмы

Пояснение.

Последовательность процессов нормальных вдоха и выдоха у человека, начиная с повышения концентрации СО 2 в крови:

3) повышение концентрации СО 2 →4) возбуждение хеморецепторов продолговатого мозга→6) расслабление диафрагмы→1) сокращение диафрагмы→2) повышение концентрации кислорода→5) выдох

Ответ: 346125

Примечание.

Дыхательный центр находится в продолговатом мозге. Под действием углекислого газа крови в нем возникает возбуждение, оно передается к дыхательным мышцам, происходит вдох. При этом возбуждаются рецепторы растяжения в стенках легких, они посылают тормозящий сигнал в дыхательный центр, он перестает посылать сигналы к дыхательным мышцам, происходит выдох.

Если задержать дыхание надолго, то углекислый газ будет все сильнее возбуждать дыхательный центр, в конце концов дыхание возобновится непроизвольно.

Кислород не влияет на дыхательный центр. При избытке кислорода (при гипервентиляции) происходит спазм сосудов мозга, что приводит к головокружению или обмороку.

Т.к. данное задание вызывает много споров, о том, что последовательность в ответе не корректная - принят решение отправить данное задание в неиспользуемые.

Кто хочет подробнее узнать о механизмах регуляции дыхания можно почитать статью "Физиология системы дыхания". О хеморецепторах в самом конце статьи.

Дыхательный центр

Под дыхательным центром следует понимать совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.

В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении О 2 в крови и концентрации Н + во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различных структур ЦНС. У человека это, например, структуры, обеспечивающие речь. Речь (пение) может в значительной степени отклонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими афферентными стимулами дыхательного центра, но, в конечном счете, химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может беско­нечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром, расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О 2 и СО 2 во внутренней среде организма.

Диафрагмальные мотонейроны. Образуют диафрагмальный нерв. Нейроны расположены узким столбом в медиальной части вентральных рогов от СIII до CV. Диафрагмальный нерв состоит из 700-800 миелинизированных и более 1500 немиелинизированных волокон. Подавляющее количество волокон является аксонами α-мотонейронов, а меньшая часть представлена афферентными волокнами мышечных и сухожильных веретен, локализованных в диафрагме, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

Мотонейроны сегментов спинного мозга, иннервирующие дыхательные мышцы. На уровне CI-СII вблизи латерального края промежуточной зоны серого вещества находятся инспираторные нейроны, которые участвуют в регуляции активности межреберных и диафрагмальных мотонейронов.

Мотонейроны, иннервирующие межреберные мышцы, локализованы в сером веществе передних рогов на уровне от TIV до ТX. Причем одни нейроны регулируют преимущественно дыхательную, а другие - преимущественно позно-тоническую активность межреберных мышц. Мотонейроны, иннервирующие мышцы брюшной стенки, локализованы в пределах вентральных рогов спинного мозга на уровне TIV-LIII.

Генерация дыхательного ритма.

Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриутробного развития. Об этом судят по периодически возникающим ритмическим сокращениям мышц вдоха у плода. В настоящее время доказано, что возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов продолговатого мозга. Иными словами, первоначально дыхательные нейроны способны самовозбуждаться. Этот же механизм поддерживает вентиляцию легких у новорожденных в первые дни после рождения. С момента рождения по мере формирования синаптических связей дыхательного центра с различными отделами ЦНС пейсмекерный механизм дыхательной активности быстро теряет свое физиологическое значение. У взрослых ритм активности в нейронах дыхательного центра возникает и изменяется только под влиянием различных синаптических воздействий на дыхательные нейроны.

Дыхательный цикл подразделяют на фазу вдоха и фазу выдоха относительно движения воздуха из атмосферы в сторону альвеол (вдох) и обратно (выдох).

Двум фазам внешнего дыхания соответствуют три фазы активности нейронов дыхательного центра продолговатого мозга: инспираторная , которая соответствует вдоху; постинспираторная , которая соответствует первой половине выдоха и называется пассивной контролируемой экспирацией; экспираторная , которая соответствует второй половине фазы выдоха и называется фазой активной экспирации.

Активность дыхательных мышц в течение трех фаз нейронной активности дыхательного центра изменяется следующим образом. В инспирацию мышечные волокна диафрагмы и наружных межреберных мышц постепенно увеличивают силу со­кращения. В этот же период активируются мышцы гортани, которые расширяют голосовую щель, что снижает сопротивление воздушному потоку на вдохе. Работа инспираторных мышц во время вдоха создает достаточный запас энергии, которая высвобождается в постинспираторную фазу, или в фазу пассивной контролируемой экспирации. В постинспираторную фазу дыхания объем выдыхаемого из легких воздуха контролируется медленным расслаблением диаф­рагмы и одновременным сокращением мышц гортани. Сужение голосовой щели в постинспираторную фазу увеличивает сопротивление воздушному потоку на выдохе. Это является очень важным физиологическим механизмом, который препятствует спадению воздухоносных путей легких при резком увеличении скорости воздушного потока на выдохе, например при форсированном дыхании или защитных рефлексах кашля и чиханья.

Во вторую фазу выдоха, или фазу активной экспирации, экспираторный поток воздуха усиливается за счет сокращения внутренних межреберных мышц и мышц брюшной стенки. В эту фазу отсутствует электрическая активность диафрагмы и наружных межреберных мышц.

Регуляция деятельности дыхательного центра.

Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.

Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.

Ответ: 346125

Контроль за нормальным содержанием во внутренней среде организма О 2 , СО 2 и рН осуществляется периферическими и центральными хеморецепторами . Адекватным раздражителем для периферических хеморецепторов является уменьшение напряжение О 2 артериальной крови, но в большей степени увеличение напряжение СО 2 и уменьшение рН, а для центральных хеморецепторов – увеличение концентрации Н + во внеклеточной жидкости мозга и напряжения СО 2.

Периферические (артериальные) хеморецепторы находятся в основном в каротидных тельцах, расположенных в области бифуркации общих сонных артерий, и аортальных тельцах, находящихся в верхней и нижней частях дуги аорты. Сигналы от хеморецепторов аорты поступают по аортальной ветви блуждающего нерва, а от хеморецепторов каротидного синуса - по каротидной ветви языкоглоточного нерва (нерв Геринга) к дорсальной группе дыхательных нейронов продолговатого мозга. Более важную роль в возбуждении ДЦ играют хеморецепторы каротидного синуса.

Центральные (медуллярные) хеморецепторы чувствительны к изменению концентрации Н + межклеточной мозговой жидкости. Они постоянно стимулируются Н + , концентрация которых зависит от напряжения СО 2 в крови. При увеличении ионов Н + и напряжения СО 2 увеличивается активность нейронов ДЦ продолговатого мозга, растет вентиляция легких, и дыхание становится более глубоким. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы. Центральные хеморецепторы позднее реагируют на изменения газов крови, но возбудившись, обеспечивают прирост вентиляции на 60-80 %.

Отклонения, вызванные изменениями обмена веществ или состава дыхательного воздуха, приводят к изменению активности дыхательных мышц и альвеолярной вентиляции, возвращая значения напряжения О 2 , СО 2 и рН к их должному уровню (приспособительная реакция) (рис.15).

Рис.15. Роль хеморецепторов в регуляции дыхания.

Таким образом, главная цель регуляции дыхания состоит в том, чтобы легочная вентиляция соответствовала метаболическим потребностям организма. Так, при физической нагрузке требуется больше кислорода, соответственно должен возрасти объем дыхания.

Дыхательные нейроны продолговатого мозга

Дыхательный центр (ДЦ) – совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм. В продолговатом мозге имеется 2 скопления дыхательных нейронов: одно из них находится в дорсальной части, недалеко от одиночного ядра – дорсальная дыхательная группа (ДДГ), другое расположено вентральнее, вблизи от двойного ядра – вентральная дыхательная группа (ВДГ), где локализованы центры вдоха и выдоха.

В дорсальном ядре были обнаружены два класса нейронов: инспираторные нейроны типа Iα и Iβ. При акте вдоха возбуждаются оба класса этих нейронов, но выполняют разные задачи:

Инспираторные Iα-нейроны активируют α-мотонейроны диафрагмальной мышцы, и, одновременно, посылают сигналы к инспираторным нейронам вентрального дыхательного ядра, которые в свою очередь, возбуждают α-мотонейроны скелетных дыхательных мышц;

Инспираторные Iβ-нейроны, возможно с помощью вставочных нейронов, запускают процесс торможения Iα-нейронов.

В вентральном ядре были обнаружены два типа нейронов – инспираторные (от них возбуждение идет к альфа-мотонейронам скелетной дыхательной мускулатуры) и экспираторные (активируют экспираторные скелетные мышцы). Среди них были выделены следующие виды нейронов:

1. «ранние» инспираторные – активны в начале фазы вдоха (инспирации);

2. «поздние» инспираторные –активны в конце вдоха;

3. «полные» инспираторные – активны в течение всего вдоха;

4. постинспираторные – максимальный разряд в начале выдоха;

5. экспираторные – активны во вторую фазу выдоха;

6. преинспираторные – активны перед вдохом. Они выключают активную экспирацию (выдох).

Нейроны экспираторного и инспираторного отделов дыхательного центра функционально неоднородны, контролируют разные фазы дыхательного цикла и работают ритмически.

Хеморецепторный контроль дыхания (ХКД) осуществляется при участии:

- Центральных хеморецепторов - расположены в ростральных отделах вентральной дыхательной группы, в структурах голубого пятна., в реткикулярных ядрах шва ствола мозга. Реагируют на водородные ионы в окружающей их межклеточной жидкости мозга. Центральные хем. - нейроны, которые являются рецепторами СО2, т. к. величина рН обусловлена Парц.Р СО2, а также тем, что концентрация ионов водорода в межклеточной жидкости мозга зависит от Парц.Р СО2 в артериальной крови. Увеличение вентиляции легких при стимуляции центральных хем. Ионами водорода - Центральным хеморефлексом, оказывающий выраженное влияние на дыхание. Центральные хем. Медленно реагируют на изменение СО2 в артериальной крови, что обусловлено их локализацией в ткани мозга. Центральные хем. Стимулируют линейное увеличение вентиляции легких при увеличении СО2 в артериальной крови выше порогового = 40 мм.рт.ст.

-Периферические хеморецепторы - расположены в каротидных тельцах в области бифуркации общих сонных артерий и в аортальных тельцах в области дуги аорты. ПХ реагируют на изменение концентрации водородных ионов, Парц.Р О2 в артериальной крови. При гипоксии ПХ активируются под влиянием увеличения концентрации в артериальной крови, прежде всего ионов водорода и РСО2. Действие на ПХ этих раздражителей усиливается по мере снижения в крови РО2. Гипоксия увеличивает чувствительность ПХ к и СО2 - асфиксия и возникает при прекращении вентиляции легких. Импульсы от ПХ по волокнам синокаротидного нерва и аортальной ветви блуждающего нерва достигаю чувствительных нейронов ядра одиночного тракта продолговатого мозга=> переключаются на нейроны дыхательного центра. Его возбуждение приводит к росту вентиляции легких.

144.Механорецепторный контроль дыхания. Механорецепторы легких: виды, адекватные раздражители. . Роль проприоцепторов дыхательных и недыхательных мышц в регуляции дыхания. МКД осуществляется рефлексами, которые возникают при раздражении механорецепторов дыхательных путей легких. В тканях этих путей расположено 2 основных типа механорецепторов, импульсы от которых поступают к нейронам дыхательного центра:

-Быстро адаптирующиеся рецепторы (БР) - нах. В эпителии или субэпителиальном слое, начиная от верхних дыхательных путей до альвеол.

БР инициируют такие рефлексы, как нюхательный.

Они возбуждаются при попадании на слизистую оболочки трахеи и бронхов раздражителей (пыль, слизь, табачный дым)



В зависимости от местоположения ирритантных рецепторов в дыхательных путях возникают специфические рефлекторные реакции дыхания.

Раздражение рецепторов слизистой оболочки носовой полости при участии тройничного нерва вызывает рефлекс чиханья. Рецепторов слизистой оболочки от трахеи до бронхиол - блуждающий нерв. Рецепторов слизистой оболочки гортани и трахеи - через волокна блуждающего нерва - Рефлекс чиханья.

-Медленно адаптирующиеся рецепторы растяжения легких. Нах. В гладких мышцах дыхательных путей бронхиального дерева и раздражаются в результате увеличения объема легких. Рецепторы связаны с нейронами дорсальной дыхательной группы дыхательного центра миелинизированными афферентными волокнами блуждающего нерва. Стимуляция этих рецепторов вызывает рефлекс Геринга-Брейера. У человека в состоянии бодрствования этот рефлекторный эффект возникает при величине дыхательного объема, которая превышает в 3 раза его нормальную величину при спокойном дыхании.

-Легочные J-рецепторы. Нах. В пределах стенок альвеол в месте их контакта с капиллярами и способны реагировать на стимулы со стороны легких и легочного кровообращения. Рецепторы связаны с дыхательным центром немиелинизированными афферентными С-волокнами. Рецепторы повышаю активность при увеличении в плазме крови концентрации ионов водорода, при сдавливании легочной ткани. Наибольшую активность имеют во время физической активности большой мощности и при подъеме на большую высоту. Возникающее при этом раздражение рецепторов вызывает частое, поверхностное дыхание, одышку.

-Проприорецепторы. Дыхательный центр непрерывно получает афферентные входы от прориорецепторов мышц (мышечные веретена и сухожильные рецепторы Гольджи) по восходящим спинальным трактам. Эти афферентные входы являются как неспецифическими (рецепторы расположены в мышцах и суставах конечностей), так и специфическими (рецепторы расположены в дыхательных мышцах). Импульсация от проприорецепторов распространяется преимущественно к спинальным центрам дыхательных мышц, а также к центрам головного мозга, контролирующим тонус скелетной мускулатуры. Активация проприорецепторов в момент начала физической нагрузки является основной причиной увеличения активности дыхательного центра и повышения вентиляции легких. Проприорецепторы межреберных мышц и диафрагмы рефлекторно регулируют ритмическую активность дыхательного центра продолговатого мозга в зависимости от положения грудной клетки в различные фазы дыхательного цикла, а на сегментарном уровне - тонус и силу сокращения дыхательных мышц.



Проприоцептивный контроль дыхания. Рецепторы суставов груд­ной клетки посылают импульсы в кору больших полушарий и являются единственным источником информации о движениях груд­ной клетки и дыхательных объемах.

Межреберные мышцы, в меньшей степени диафрагма, содержат большое количество мышечных веретен. Активность этих рецепторов проявляется при пассивном растяжении мышц, изометрическом со­кращении и изолированном сокращении интрафузальных мышечных волокон. Рецепторы посылают сигналы в соответствующие сегменты спинного мозга. Недостаточное укорочение инспираторных или экс­пираторных мышц усиливает импульсацию от мышечных веретен, которые через γ-мотонейроны повышают активность α-мотонейронов и дозируют таким образом мышечное усилие.

По современным представлениям дыхательный центр - это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1-0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания - гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы - это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний - эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2-3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ - серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей - кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Регуляция дыхания - это согласованное нервное управление дыхательными мышцами, последовательно осуществляющими дыхательные циклы, состоящие из вдоха и выдоха.

Дыхательный центр - это сложное многоуровневое структурно-функциональное образование мозга, осуществляющее автоматическую и произвольную регуляцию дыхания.

Дыхание - процесс автоматический, но он поддается произвольной регуляции. Без такой регуляции невозможна была бы речь. Вместе с тем, управление дыханием построено на рефлекторных принципах: как безусловно-рефлекторных, так и условно-рефлекторных.

Регуляция дыхания построена на общих принципах автоматической регуляции, которые используются в организме.

Пейсмейкерные нейроны (нейроны - "создатели ритма") обеспечивают автоматическое возникновение возбуждения в дыхательном центре даже в том случае, если не будут раздражаться дыхательные рецепторы.

Тормозные нейроны обеспечивают автоматическое подавление этого возбуждения через определённое время.

В дыхательном центре используется принцип реципрокного (т.е. взаимоисключающего) взаимодействия двух центров: вдоха и выдоха . Их возбуждение находится в обратно пропорциональной зависимости. Это означает, что возбуждение одного центра (например, центра вдоха) тормозит связанный с ним второй центр (центр выдоха).

Функции дыхательного центра
- Обеспечение вдоха.
- Обеспечение выдоха.
- Обеспечение автоматии дыхания.
- Обеспечение приспособления параметров дыхания к условиям внешней среды и деятельности организма.
Например, при повышении температуры (как в окружающей среде, так и в организме) дыхание учащается.

Уровни дыхательного центра

1. Спинальный (в спинном мозге). В спинном мозге расположены центры, координирующие деятельность диафрагмы и дыхательных мышц - L-мотонейроны в передних рогах спинного мозга. Диафрагмальные нейроны - в шейных сегментах, межреберные - в грудных. При перерезке проводящих путей между спинным и головным мозгом дыхание нарушается, т.к. спинальные центры не обладают автономностью (т.е. самостоятельностью) и не поддерживают автоматию дыхания.

2. Бульбарный (в продолговатом мозге) - основной отдел дыхательного центра. В продолговатом мозге и варолиевом мосту располагаются 2 основных вида нейронов дыхательного центра - инспираторные (вдыхательные) и экспираторные (выдыхательные).

Инспираторные (вдыхательные) - возбуждаются за 0,01-0,02 с до начала активного вдоха. Во время вдоха у них увеличивается частота импульсов, а затем мгновенно прекращается. Подразделяются на несколько видов.

Виды инспираторных нейронов

По влиянию на другие нейроны:
- тормозные (прекращают вдох)
- облегчающие (стимулируют вдох).
По времени возбуждения:
- ранние (за несколько сотых долей секунды до вдоха)
- поздние (активны в процессе всего вдоха).
По связям с экспираторными нейронами:
- в бульбарном дыхательном центре
- в ретикулярной формации продолговатого мозга.
В дорсальном ядре 95% - инспираторные нейроны, в вентральном - 50%. Нейроны дорсального ядра связаны с диафрагмой, а вентрального - с межрёберными мышцами.

Экспираторные (выдыхательные) - возбуждение возникает за несколько сотых долей секунды до начала выдоха.

Различают:
- ранние,
- поздние,
- экспираторно-инспираторные.
В дорсальном ядре 5% нейронов являются экспираторными, а в вентральном - 50%. В целом экспираторных нейронов значительно меньше, чем инспираторных. Получается, что вдох важнее выдоха.

Автоматию дыхания обеспечивают комплексы из 4-х нейронов с обязательным присутствием тормозных.

Взаимодействие с другими центрами мозга

Дыхательные инспираторные и экспираторные нейроны имеют выход не только на дыхательные мышцы, но и на другие ядра продолговатого мозга. Например, при возбуждении дыхательного центра реципрокно тормозится центр глотания и в то же время, наоборот, возбуждается сосудо-двигательный центр регуляции сердечной деятельности.

На бульбарном уровне (т.е. в продолговатом мозге) можно выделить пневмотаксический центр , расположенный на уровне варолиева моста, выше инспираторных и экспираторных нейронов. Этот центр регулирует их активность и обеспечивает смену вдоха и выдоха . Инспираторные нейроны обеспечивают вдох и одновременно от них возбуждение поступает в пневмотаксический центр. Оттуда возбуждение бежит к экспираторным нейронам, которые возбуждаются и обеспечивают выдох. Если перерезать пути между продолговатым мозгом и варолиевым мостом, то уменьшится частота дыхательных движений, засчёт того, что уменьшается активирующее действие ПТДЦ (пневмотаксического дыхательного центра) на инспираторные и экспираторные нейроны. Это также приводит к удлинению вдоха засчёт длительного сохранения тормозного влияния экспираторных нейронов на инспираторные.

3. Супрапонтиальный (т.е. "надмостовый") - включает в себя несколько областей промежуточного мозга:
Гипоталамическая область - при раздражении вызывает гиперпноэ - увеличение частоты дыхательных движений и глубины дыхания. Задняя группа ядер гипоталамуса вызывает гиперпноэ, передняя группа действует противоположным образом. Именно засчёт дыхательного центра гипоталамуса дыхание реагирует на температуру окружающей среды.
Гипоталамус совместно с таламусом обеспечивает изменение дыхания при эмоциональных реакциях .
Таламус - обеспечивает изменение дыхания при болевых ощущениях.
Мозжечок - приспосабливает дыхание к мышечной активности.

4. Моторная и премоторная зона коры больших полушарий головного мозга. Обеспечивает условно-рефлекторную регуляцию дыхания. Всего за 10-15 сочетаний можно выработать дыхательный условный рефлекс. Засчёт этого механизма, например, у спортсменов перед стартом возникает гиперпноэ.
Асратян Э.А. в своих опытах удалял у животных эти области коры. При физической нагрузке у них быстро возникала одышка - диспноэ, т.к. им не хватало этого уровня регуляции дыхания.
Дыхательные центры коры дают возможность произвольного изменения дыхания.

Регуляция деятельности дыхательного центра
Бульбарный отдел дыхательного центра является главным, он обеспечивает автоматию дыхания, но его деятельность может изменяться под действием гуморальных и рефлекторных влияний.

Гуморальные влияния на дыхательный центр
Опыт Фредерика (1890). Он сделал перекрестное кровообращение у двух собак - голова каждой собаки получила кровь от туловища другой собаки. У одной собаки зажимали трахею, следовательно, возрастал уровень углекислого газа и понижался уровень кислорода в крови. После этого другая собака начинала часто дышать. Возникало гиперпноэ. В следствие этого в крови уменьшался уровень СО2 и возрастал уровень О2. Эта кровь поступала к голове первой собаки и тормозила ее дыхательный центр. Гуморальное торможение дыхательного центра могло довести эту первую собаку до апноэ, т.е. остановки дыхания.
Факторы, гуморально влияющие на дыхательный центр:
Избыток СО2 - гиперкарбия, вызывает активацию дыхательного центра.
Недостаток О2 - гипоксилия, вызывает активацию дыхательного центра.
Ацидоз - накопление ионов водорода (закисление), активирует дыхательный центр.
Недостаток СО2 - торможение дыхательного центра.
Избыток О2 - торможение дыхательного центра.
Алколоз - +++торможение дыхательного центра
Сами нейроны продолговатого мозга засчет высокой активности вырабатывают много СО2 и локально воздействуют на самих себя. Положительная обратная связь (сами себя усиливают).
Кроме прямого действия СО2 на нейроны продолговатого мозга существует рефлекторное действие через рефлексогенные зоны сердечно-сосудистой системы (рефлексы Рейманса). При гиперкарбии возбуждаются хеморецепторы и от них возбуждение поступает к хемочувствительным нейронам ретикулярной формации и к хемочувствительным нейронам коры головного мозга.
Рефлекторное влияние на дыхательный центр.
1. Постоянное влияние.
Рефлекс Гелинга-Брейера. Механорецепторы в тканях легких и дыхательных путей возбуждаются при растяжении и спадении легких. Они чувствительны к растяжению. От них импульсы по вакусу (блуждающий нерв) идет в продолговатый мозг к инспираторным L-мотонейронам. Вдох прекращается и начинается пассивный выдох. Этот рефлекс обеспечивает смену вдоха и выдоха и поддерживает активность нейронов дыхательного центра.
При перегрузке вакуса и перерезке рефлекс отменяется: снижается частота дыхательных движений, смена вдоха и выдоха осуществляется резко.
Другие рефлексы:
растяжение легочной ткани тормозит последующий вдох (экспираторно-облегчающий рефлекс).
Растяжение легочной ткани при вдохе сверх нормального уровня вызывает дополнительный вздох (парадоксальный рефлекс Хеда).
Рефлекс Гейманса - возникает от хеморецепторов сердечно-сосудистой системы на концентрацию СО2 и О2.
Рефлекторное влияние с пропреорецепторов дыхательных мышц - при сокращении дыхательных мышц возникает поток импульсов от пропреорецепторов к ЦНС. По принципу обратной связи изменяется активность инспираторных и экспираторных нейронов. При недостаточном сокращении инспираторных мышц возникает респираторно-облегчающий эффект и вдох усиливается.
2. Непостоянные
Ирритантные - расположены в дыхательных путях под эпителием. Являются одновременно механо- и хеморецепторами. Имеют очень высокий порог раздражения, поэтому работают в экстраординарных случаях. Например, при понижении легочной вентиляции объем легких уменьшается, возбуждаются ирритантные рецепторы и вызывают рефлекс форсированного вдоха. В качестве хеморецепторов эти же рецепторы возбуждаются биологически активными веществами - никотин, гистамин, простогландин. Возникает чувство жжения, першения и в ответ - защитный кашлевой рефлекс. В случае патологии ирритантные рецепторы могут вызвать спазм дыхательных путей.
в альвеолах рецепторы юкста-альвеолярные и юкста-капиллярные реагируют на объем легких и биологически активные вещества в капиллярах. Повышают частоту дыхания и сокращают бронхи.
На слизистых оболочках дыхательных путей - экстерорецепторы. Кашель, чихание, задержка дыхания.
На коже - тепловые и холодовые рецепторы. Задержка дыхания и активация дыхания.
Болевые рецепторы - кратковременная задержка дыхания, затем усиление.
Энтерорецепторы - с желудка.
Пропреорецепторы - со скелетных мышц.
Механорецепторы - с сердечно-сосудистой системы.



Понравилась статья? Поделитесь ей