Контакты

Антивитамины и пути устранения их негативного действия. Что представляют собой антивитамины? Антивитамины можно разделить на две основные группы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В ведение

Витамины, это катализаторы биохимических процессов, которые, попадая в организм, превращаются в коферменты, вступают во взаимодействие со специфическими белками и ускоряют обмен веществ. При этом каждый фермент и соответствующий ему витамин специфичны, т.е. витамины могут встраиваться только в соответствующий им белок (фермент). А ферменты в свою очередь могут выполнять только определенную им функцию и не могут заменять друг друга.

Антивитамины имеют схожую структуру с соответствующими им витаминами. В организме превращаются в ложный кофермент и занимают место настоящего витамина. Специфические белки не замечают отличия и пытаются выполнять свои функции, но из-за антивитамина уже ничего не получается. Соответствующий ферменту биохимический процесс остановлен.

Специалисты не исключают, что возникший псевдофермент начинает играть свою не менее важную биохимическую роль. Например, подобные изменения структуры нарушают в микобактериях туберкулеза обменные процессы, в результате задерживают размножение и рост возбудителей заболевания. Подобные процессы наблюдаются и в действии противомалярийных препаратов. Но далеко не все антивитамины находят применение в медицинской практике. Химики синтезировали уже тысячи различных производных витаминов, некоторые из которых с антивитаминными свойствами, но большинство из них имеют слабую фармакобиологическую активность. Хотя вполне возможно, что именно антагонисты витаминов станут основным средством борьбы с заболеваниями.

Антивитаминами называют вещества, которые различными способами нарушают биохимическое использование витаминов живой клеткой, что приводит к состоянию недостаточности какого-либо определенного витамина или группы витаминов. Развитие исследований в области химиотерапии, питания микроорганизмов, животных и человека, установление химической структуры витаминов создали реальные возможности для уточнения наших представлений об антагонизме веществ также в области витаминологии. Вместе с тем открытие антивитаминов способствовало более полному и углубленному изучению физиологического действия самих витаминов, так как применение в эксперименте антивитамина приводит к выключению действия витамина и соответствующим изменениям в организме; это в известной степени расширяет наши познания о функциях, которые тот или другой витамин несет в организме.

1. А нтивитамины

Антивитамины можно разделить на две основные группы.

· К первой группе относятся химические вещества, которые инактивируют витамин путем его расщепления, разрушения или связывания его молекул в неактивные формы.

· Ко второй группе относятся химические вещества структурно-подобные или структурно-родственные витаминам. Эти вещества вытесняют витамины из биологически активных соединений и, таким образом, делают их неактивными.

В результате действия антивитаминов обеих групп нарушается нормальное течение процесса обмена веществ в организме.

В качестве примера действия антивитаминов первой группы можно привести следующее. Как указывалось выше, определенная альбуминовая фракция сырого яичного белка, называемая авидином, обладает способностью связываться с витамином Н (биотином); при этом образуется биологически неактивное, т.е. уже не имеющее свойств витамина Н, вещество, называемое биотин-авидином. Это вещество не растворимо в воде и не всасывается кишечником, значит не может быть использовано организмом. Следовательно, авидин является антивитамином по отношению к биотину.

Другим примером могут служить различные "витаминазы", которые разрушают, расщепляют соответствующие витамины; так, термолабильный фермент тиаминаза разрушает витамин В 1 отделяя от его структуры два кольца - пиримидиновое и тиазольное.

Тиаминаза была выделена из сырых внутренностей рыб: карпа, форели, макрели, трески и сельди. Для человека реальную опасность в этом отношении представляют сырые моллюски, например устрицы, используемые в пищу в некоторых странах, так как они содержат тиаминазу.

Другой фермент - аскорбиназа - разрушает аскорбиновую кислоту, а фермент липоксидаза, содержащийся в некоторых соевых бобах, катализирует деструкцию каротина. Таким образом, ферменты - тиаминаза, аскорбиназа, липоксидаза - являются соответственно антивитаминами по отношению к тиамину, аскорбиновой кислоте, каротину.

Антивитамины второй группы, т. е. структурные аналоги витаминов могут оказывать существенное влияние на процессы обмена в организме. Развитие учения об антивитаминах было начато в исследованиях Woods и Fildes, которые на примерах антагонистического действия между сульфаниламидными препаратами и пара-аминобензойной кислоты разработали теорию, сущность которой заключается в следующем.

В каждом организме находятся вещества, которые входят в состав живой клетки и регулируют нормальный ход обменных реакций организма, поэтому данные вещества совершенно необходимы для организма. К ним относятся витамины, гормоны, аминокислоты, минеральные соединения. Однако известно большое число химически родственных веществ (большей частью изготовленных искусственно), которые не обладают биологически активными свойствами, а, наоборот, во многих случаях ограничивают или совершенно уничтожают действие витаминов, т. о. обладают антагонистическим действием. По отношению к витамину эти вещества являются антивитаминами. Антагонизм между витамином и антивитамином может иметь конкурирующий и неконкурирующий характер. При конкурирующем антагонизме родственные по своей химической структуре вещества - антивитамины - вытесняют витамины из их соединений со специфическими ферментами.

Примером конкурирующего антагонизма являются взаимоотношения между пара-аминобензойной кислотой и сульфаниламидами.

Известно, что пара-аминобензойная кислота является для ряда микроорганизмов важным метаболитом и образует в качестве коэнзима со специфическим белком фермента биологически активную ферментную систему. Сульфаниламиды, обладающие химической структурой, сходной с пара-аминобензойной кислотой, вытесняют ее из этой ферментной системы, замещают собой и в результате образуют с теми же специфическими белками ферментов новые системы, однако уже биологически неактивные. Этим объясняется бактериостатическое действие сульфаниламидов на некоторые бактерии.

При добавлении к культуре бактерий, выращиваемых на определенной среде сульфаниламидов, наблюдается остановка или задержка роста бактерий. Если после этого к "инактивированным" бактериям добавить пара-аминобензойную кислоту, то рост бактерий возобновляется. Таким образом, проявляется, по-видимому, конкурентное действие между витамином и антивитамином за обладание биологически активными ферментными системами. При этом следует учитывать, что если микроорганизмы способны сами синтезировать в достаточном количестве пара-аминобензойную кислоту, то бактериостатического действия на них сульфаниламидов не проявляется. Этим, возможно, объясняется тот факт, что некоторые микробы не чувствительны к сульфаниламидным препаратам. Аналогичными антагонистическими свойствами обладают амид никотиновой кислоты и пиридин-3-сульфоновая кислота (также ацетил-3-пиридин), тиамин и пиритиамин и многие другие.

Некоторые антивитамины обладают слабым антагонистическим действием по отношению к витаминам. Так, упомянутая пиридин-3-сульфоновая кислота оказывает слабое бактериостатическое действие на золотистого стафилококка, рост которого стимулируется никотиновой кислотой или ее амидом. Другой антивитамин - ацетил-3-пиридин, наоборот, обладает выраженным антагонистическим действием по отношению к никотиновой кислоте. В опытах, проводимых на собаках и мышах, введение ацетил-3-пиридина вызывало у животных отчетливые симптомы РР-витаминной недостаточности, которые предупреждались или ликвидировались при дополнительном введении препаратов никотиновой кислоты. В наблюдениях Aykroyd и Swaminathan (цит. по С.М. Рыссу) было подтверждено, что содержащийся в некоторых злаках ацетил-3-пиридин может вызывать пеллагру у людей. В этом наблюдении одна группа лиц, получавшая определенную диету без злаков и 5 мг никотиновой кислоты, не заболевала пеллагрой. Другая группа получала к той же диете 15 мг никотиновой кислоты с добавлением злаков и заболевала пеллагрой. Из злаков был выделен ацетил-3-пиридин, который является аналогом никотиновой кислоты и действовал в качестве фактора, провоцировавшего развитие пеллагры.

Другой антивитамин - пиритиамин - производное тиамина (в котором тиазоловое кольцо замещено пиридиновой группировкой), при добавлении к пище вызывает явления B 1 -авитаминоза. При дополнении витамина В 1 к диете, содержащей пиритиамин, явления В 1 -авитаминоза не развиваются; вместе с тем витамин В 1 излечивал животных, у которых в результате введения пиритиамина развивался тяжелый B 1 -авитаминоз. Из других химических аналогов витамина В 1 , которые способны также действовать как антивитамины, следует указать на окситиамин, хлордиметилтиамин и бутилтиамин, которые представляют собой модификацию тиаминового кольца и соединения, в которых тиазоловое кольцо замещено пиридиновым, более или менее видоизмененным.

Установлено, что ауэромицин и террамицин, химическая формула которых близка к рибофлавину, способны замещать этот витамин в реакциях обмена и, таким образом, инактивировать его действие и вызывать гипо- или арибофлавиноз.

Существует ряд антивитаминов, которые угнетают действие рибофлавина, обладая сходной с ним химической структурой, например изорибофлавин, диэтилрибофлавин, дихлорорибофлавин и др. Вместе с тем некоторые вещества с противомалярийным действием, в особенности акрихин, хинин и близкие им соединения, хотя и не обладают структурным сходством с рибофлавином, все же угнетают его влияние на рост некоторых бактерий. Обнаружено, что акрихин и хинин угнетают активность рибофлавиновых энзимных систем, что позволяет предположить наличие и в этом случае конкурентных взаимоотношений между упомянутыми противомалярийными веществами и витамином В 2 . Возможно, что в данном случае проявляется другая форма антагонизма (неконкурентная). Некоторые вещества угнетают ферментные системы, которые способствуют фосфорилированию рибофлавина (например, монойодуксусная кислота, рибофлавин-5-фосфорная кислота и др.). Существует предположение, что антивитаминные свойства акрихина и хинина зависят от этого свойства.

Известны также антивитамины пиридоксина - 4-дезоксипиридоксаль, 5-дезоксипирндоксаль и метаоксипиридоксаль.

Ряд противотуберкулезных препаратов, представляющих собой гидразид изоникотиновой кислоты и его производные (тубазид, фтивазид, салюзид, метазид и др.), обладает антагонистическими свойствами по отношению к пиридоксину. Вызываемое этими препаратами побочное действие устраняется введением витамина В 6 . Имеются данные (Makino) об антагонистическом действии пиримидиновой части тиамина на пиридоксин. Введение этого вещества вызывает явления тяжелой интоксикации, ведущей к гибели животных. Это токсическое действие устраняется, если животным ввести пиридоксин. Особенно сильным антагонистом пиридоксальфосфата является фосфорилированный пиримидин.

Структурным аналогом аскорбиновой кислоты является глюкоаскорбиновая кислота, которая инактивирует ее. Мыши, как известно, не нуждаются в витамине С (он синтезируется у них в организме) и не болеют цингой. Однако введение мышам с пищей глюкоаскорбиновой кислоты вызывает у животных цингу, излечиваемую аскорбиновой кислотой.

Примером неконкурирующего антагонизма может служить следующее. Для абсорбции витамина В 12 необходим внутренний антианемический фактор Касла. Обнаружено, что свинец угнетает активность этого фактора. Вследствие блокирования фактора Касла у экспериментальных животных при введении свинца развивается сначала гипохромная, а затем гиперхромная анемия, т. е. В 12 -авитаминоз. Введение витамина В 12 в короткий срок восстанавливает у животных нормальный состав крови (при одновременном прекращении дачи свинца). Аналогичный антагонизм наблюдается между свинцом и фолиевой кислотой.

Другим примером неконкурирующего антагонизма являются витамин К и дикумарин. Первый, как известно, повышает способность крови свертываться, второй, наоборот, снижает эту способность крови. Оба свойства этих антагонистов - витамина и антивитамина - широко используются в медицинской практике.

Познание веществ, которые способны различными методами нарушать нормальную функцию витаминов в живой клетке, привело к более глубокому пониманию межуточного обмена у человека. Выяснение вопросов, относящихся к проблеме антиметаболитов, открывает большие перспективы в медицинской практике - возможность изыскания и получения новых химических веществ, специфически действующих при определенных патологических состояниях.

2. История антивитаминов

История антивитаминов началась лет пятьдесят назад с одной, поначалу казалось бы, неудачи. Химики решили синтезировать витамин Вс (фолиевую кислоту) и заодно несколько усилить его биологические свойства. Этот витамин, как известно, участвует в биосинтезе белка и активизирует процессы кроветворения. Следовательно, в процессах жизнедеятельности ему отводится далеко не второстепенная роль.

А химический аналог полностью утратил витаминную активность. Но оказалось, что новое соединение тормозит развитие клеток, прежде всего раковых. Оно вошло в реестр эффективных противоопухолевых средств для лечения больных некоторыми злокачественными новообразованиями.

Стремясь понять механизм лечебного эффекта препарата, биохимики установили, что он является... антагонистом витамина Вс. Его лечебное действие обусловлено тем, что он, вторгаясь в сложную цепочку химических реакций, нарушает превращение фолиевой кислоты в кофермент.

Соединения, противоборствующие некоторым витаминам, обнаружились и в ряде пищевых продуктов. Специалисты обратили внимание на то, что включение в рацион лисиц сырого карпа вызывало у животных развитие типичного состояния В1-авитаминоза. Позже было установлено, что в тканях сырого карпа содержится фермент тиаминаза, расщепляющий молекулу витамина В1(тиамина) до неактивных соединений.

Этот фермент затем был обнаружен и в других рыбах, причем не только пресноводных. Так, обследуя жителей Таиланда, врачи выявили у многих дефицит тиамина. Но почему? Ведь с пищей витамина поступало вполне достаточно. Последующие исследования показали, что виновница в недостаточности -- все та же тиаминаза. Она содержится в рыбе, которую население в больших количествах использует в питании в сыром виде.

Более широкие исследования позволили обнаружить и другие В-антивитаминные факторы в продуктах растительного происхождения. Например, из ягод черники выделена так называемая 3,4-дигидрооксикоричная кислота. 1,8 миллиграмма ее достаточно для нейтрализации 1 миллиграмма тиамина. Выяснилось, что антитиаминовые факторы содержатся и в других пищевых продуктах: рисе, шпинате, вишне, брюссельской капусте и т.д. Впрочем, интенсивность их антивитаминного действия настолько незначительна, что существенного значения в развитии В-гиповитаминоза они практически не имеют. Несомненный интерес представляет открытие антивитаминного фактора в кофе. Причем в отличие, скажем, от тиаминазы рыб он не разрушается при нагревании.

В овощах и фруктах, больше всего в огурцах, кабачках, цветной капусте и тыкве, содержится аскорбатоксидаза. Этот фермент ускоряет окисление витамина С до практически неактивной дикетогулоновой кислоты. А так как выяснилось, это происходит вне организма, то витамин С разрушается в растительных продуктах при их длительном хранении и во время кулинарной обработки. Например, только за счет действия аскорбатоксидазы смесь сырых размельченных овощей за 6 часов хранения теряет более половины содержащегося в ней витамина С, причем потери его тем выше, чем больше измельчены овощи.

Соевый белок, особенно в сочетании с кукурузным маслом, способен нейтрализовать действие витамина Е (токоферола). Происходит это в связи с тем, что в сое содержатся пока еще невыделенные в чистом виде антивитамины токоферола. Подобный эффект наблюдается и при употреблении сырой фасоли. Термическая обработка этих продуктов приводит к разрушению соперника витамина Е. Очевидно, такого рода факты следует учитывать тем, кто пропагандирует и увлекается "сыроедением"!.. Антивитамины обнаружены сравнительно недавно, и неизвестно, все ли "антисоединения" уже найдены в сырых натуральных продуктах.

В частности, в экспериментах на животных установлено, что в составе соевых бобов имеется белковое соединение, которое способствует развитию рахита даже при нормальном поступлении с пищей витамина D, кальция и фосфора. Оказалось, что нагревание соевой муки разрушает антивитамины, при этом, естественно, его отрицательных свойств можно не опасаться.

Отрицательных ли? А нельзя эти свойства использовать в медицинской практике при лечении D-гипервитаминозных состояний? Это еще предстоит доказать.

А вот антивитамин К уже вошел в арсенал лекарственных средств. Интересна история его создания. Специалисты выясняли причину так называемой болезни сладкого клевера у сельскохозяйственных животных, один из симптомов которой - плохая свертываемость крови. Оказалось, что в клеверном сене содержится антивитамин К - дикумарин. Витамин К способствует свертыванию крови, а дикумарин нарушает этот процесс. Так возникла идея, воплощенная затем в жизнь, использовать дикумарин для лечения различных заболеваний, обусловленных повышенной свертываемостью крови.

Незначительно изменив структуру витамина В5 (пантотеновой кислоты), химики получили вещество с противоположными витамину свойствами. В процессе длительного экспериментального изучения нового соединения была выявлена не присущая пантотеновой кислоте психотропная активность. Оказалось, что антивитамин В3 - пантогам обладает умеренным успокаивающим действием и способен оказывать противосудорожный эффект.

Соединив две молекулы витамина В6, специалисты синтезировали вещество, которое может рассматриваться как его антагонист. Затем выяснилось, что вновь полученное соединение (его называют пиридитол, энцефабол и т.д.) благоприятно влияет на некоторые ключевые обменные процессы в тканях головного мозга. Под воздействием пиридитола улучшается утилизация глюкозы клетками головного мозга, нормализуется транспорт фосфатов через гематоэнцефалический барьер, повышается их содержание в головном мозгу. В результате и этот антивитамин нашел применение в клинической практике.

В ходе изучения антивитаминов и использования их в качестве лекарственных средств возник вопрос: а каков же механизм действия такого рода химических соединений? О витаминах известно, что они в организме человека превращаются в более активные в биологическом отношении коферменты, которые, в свою очередь, вступая во взаимодействие со специфическими белками, образуют ферменты - катализаторы разнообразных биохимических процессов. А антивитамины?

Имея близкое с витаминами структурное сходство, эти соперники витаминов, возможно, трансформируются в организме человека по тем же законам, что и их "родоначальники", превращаясь в ложный кофермент. В дальнейшем он, вступая во взаимодействие со специфическим белком, подменяет собой истинный кофермент соответствующего витамина. Заняв его место, антивитамин в то же время не занял биологической роли витаминов

Фермент "обманут". Он не замечает отличия между истинным коферментом и его соперником и по-прежнему стремится выполнить свою функцию катализатора. Но это ему уже не удается. Соответствующие процессы обмена веществ остановлены--они не могут протекать без участия катализатора. Не исключено при этом, что возникший псевдофермент начинает играть присущую уже только ему биохимическую роль, и это обусловливает спектр фармакотерапевтического действия антивитамина.

Возможно, именно подобные изменения структуры лежат в основе терапевтического действия "универсальных" антивитаминов, какими являются эффективные противотуберкулёзные средства изониазид и фтивазид. Они нарушают в микобактериях туберкулеза обменные процессы не только витамина В6, но и тиамина, витаминов В3, РР и В2, благодаря чему задерживают рост и размножение возбудителей заболевания. Аналогичный механизм, очевидно, определяет и действие некоторых противомалярийных препаратов--акрихина и хинина, являющихся антагонистами рибофлавина (витамина В2).

Означают ли приведенные примеры, что каждый из синтетических антивитаминов может найти применение в медицинской практике? Нет.

К настоящему времени химики различных стран синтезировали сотни, а может быть, тысячи разнообразных производных витаминов, среди которых многие имеют антивитаминные свойства. Но далеко не все из них оказались в арсенале лекарственных средств: мала фармакобиологическая активность. Однако целесообразность дальнейших исследований свойств витаминов и их производных не вызывает сомнений. И как знать, может быть именно среди антагонистов витаминов будут обнаружены новые средства борьбы с заболеваниями.

З аключение

биохимический витамин заболевание

В заключение одна необходимая оговорка. В продуктах питания соотношение витаминов и антивитаминов сохраняется, как правило, в пользу первых. Прием антивитаминов как лекарственных средств это соотношение может нарушить. Поэтому, при необходимости, врачи наряду с антивитаминами назначают дополнительно и соответствующий витамин или коферментные препараты. К слову, это еще один довод против самолечения: ведь закономерности действия антивитаминов, их противоборства витаминам известны только врачу.

В продуктах питания все вещества, в том числе витамины и антивитамины находятся в оптимальном соотношении - дополняют друг друга. С одной стороны, антивитамины являются естественным регулятором, т.е. соперничая с витаминами, они практически исключают гипервитаминоз, даже если дневная норма витаминов будет значительно превышена. С другой стороны, антивитамины участвуют в биохимических процессах, т.е. как и витамины, предотвращают некоторые заболевания. Поэтому если начать принимать дополнительные искусственные витамины, можно нарушить баланс. Витамины, как и другие препараты, следует принимать по назначению врача, когда уже произошли нарушения в ту или иную сторону (гипо или гипервитаминоз).

Размещено на Allbest.ru

Подобные документы

    История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.

    презентация , добавлен 24.10.2012

    Классификация витаминов, их содержание в продуктах. Необходимость низкомолекулярных органических соединений с высокой биологической активностью для нормальной жизнедеятельности. Особенности витаминов различных групп, их применение и действие на организм.

    презентация , добавлен 16.11.2013

    Физиологическое значение витаминов, их классификация, пути поступления в организм человека. Ассимиляция и диссимиляция витаминов, их способность регулировать течение химических реакций в организме. Особенности жирорастворимых и водорастворимых витаминов.

    реферат , добавлен 24.07.2010

    Биосистемы различных уровней организации. Живой организм как кибернетическая система. Биологические ритмы. Нижняя поверхность полушария, главные борозды и извилины. Локализация функций связанных с первой сигнальной системой. Филогенез. Проводящий путь.

    реферат , добавлен 31.10.2008

    Особенности влияния рентгеновского излучения на гематологические показатели крови крыс на фоне приема различных штаммов спирулины и смеси витаминов. Влияние пищевых добавок на гематологические показатели крови у лабораторных животных при облучении.

    курсовая работа , добавлен 22.09.2011

    Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.

    реферат , добавлен 11.01.2013

    Обзор процесса циркуляции крови по организму, уничтожения болезнетворных организмов. Изучение состава и форменных элементов крови. Описания классификации групп крови, зависимости группы ребенка от группы родителей, лечения заболеваний переливание крови.

    презентация , добавлен 23.09.2011

    Открытие витаминов. Голландский врач Христиан Эйкман. Биохимик Карл Петер Хенрик Дам. Установление структуры и синтеза каждого витамина. Исследование роли витаминов в организме. Артур Харден. Применение синтетических витаминов. Сбалансированное питание.

    реферат , добавлен 07.06.2008

    История открытия витаминов. Их классификация, содержание в организме и основные источники поступления. Своцства и функции витаминоподобных веществ. Минеральные элементы и вещества, их биологическое действие роль в процессах жизнедеятельности организма.

    дипломная работа , добавлен 11.07.2011

    История витаминов, их основные химические свойства и структура, жизненная необходимость для нормальной жизнедеятельности организма. Понятие недостатка витаминов, сущность гипоавитаминоза и его лечение. Содержание витаминов в различных пищевых продуктах.

Те, кто регулярно читает наш блог, помнят, что в . А в самом начале той статьи я упоминал некую классификацию витаминоподобных веществ, одним из которых называл так называемые антивитамины! И знаете, меня настолько зацепила тема антивитаминов, что я решил написать отдельный пост на эту тему, в котором решил собрать и систематизировать информацию об этих веществах и вот теперь готов преподнести её Вам чтобы Вы пользовались и становились здоровее!)

Давайте начнём с того, что скажем несколько слов о том, что же такое витамины. Итак, витамины — это ускорители различных химических процессов в организме. Если схематично, то я сейчас объясню, как это происходит: витамин попадая в наш организм вступает во взаимодействие с соответствующим ферментом и ускоряет обмен веществ. Важным моментом здесь является то, что каждый конкретный витамин может встраиваться только в соответствующий ему фермент. А ферменты могут выполнять строго определённую функцию и не могут заменять друг друга.

Что же делают антивитамины?!

Сначала следует сказать о том, что существует 2 основных группы антивитаминов. Антивитамины из первой группы имеют схожую с соответствующим ему витамином структуру, поэтому просто занимают место настоящего витамина в ферменте. В дальнейшем этот псевдофермент со встроенным антивитамином пытается выполнять свои функции, но безрезультатно, т.к его состав уже другой. Поэтому биохимический процесс, выполняемый ранее благодаря оригинальному ферменту не состоится.

Антивитамины из второй группы не имеют схожей с витамином структуры и инактивируют витамины путём их разрушения, расщепления или связывания его молекул в неактивные формы

Зачем нужны антивитамины?!

Наверное у каждого, кто дочитал статью до этого места сформировалось отрицательное мнение об антивитаминах. Но на самом деле природа недаром создала антивитамин практически для каждого витамина — у этих веществ масса полезных свойств.

1. Так благодаря видоизменению некоторых витаминов те в свою очередь приобрели новые, отсутствующие у них ранее свойства.

Например витамин В9, который традиционно активизирует процессы кроветворения и участвует в биосинтезе белка под действием антивитаминов приобрёл новые свойства и стал выступать в роли блокатора для роста раковых клеток. Или например витамин В5 с изменённой структурой уже способен обладать противосудорожным и успокаивающим эффектом. Ещё одним примером является витамин К и его антивитамин дикумарин, оригинальный витамин К обладает свойством повышать свёртываемость крови, а дикумарин наоборот разжижает кровь — оба этих вещества нашли своё применение в медицине!

2. Антивитамины выступают в роли регулятора оптимального количества витаминов в организме, не допуская гипервитаминоза — переизбытка витаминов в организме.

Так что антивитамины также нужны нашему организму и их присутствие в составе продуктов — это неотъемлемая часть нашей пищевой системы!

Конкурирующий и неконкурирующий антагонизм.

Антагонизм между витамином и антивитамином может носить конкурирующий и неконкурирующий характер. При конкурирующем антагонизме антивитамины попросту вытесняют витамины из их соединения с ферментами.

При неконкурирующем антагонизме антивитамин при образовании соединения с ферментом наделяет его новыми, отсутствующими ранее свойствами.

Несколько примеров об антивитаминах из «жизни каждого»:

1. Любимый многими «летний» салат из помидорчиков и огурчиков — это один из самых наглядных примеров лишения организма витамина С. Об этом мы уже писали в статье « «. Теперь, когда мы знакомы с витаминами и антивитаминами объяснить запрет на сочетание этих овощей становится проще: огурцы и кабачки — это лидеры среди овощей по содержанию аскорбиназы. Аскорбиназа — это антивитамин витамина С. Таким образом сколько бы ни было в томатах витамина С человеческий организм его не получит, т.к. при таком сочетании овощей он разрушится ещё в салатнике на Вашем столе! Вообще многие свежие фрукты и овощи содержат различные антивитамины, поэтому сочетание продуктов на Вашем столе — это отдельная тема для разговора!

2. Потемнение среза яблока при длительном хранении — наглядно показывает Вам работу аскорбиназы в действии: под воздействием света в яблоке начинает вырабатываться этот антивитамин и сразу же приступает к окислению, т.е. разрушению витамина С.

3. Если в Вашем рационе много бурого риса, сырой фасоли и сои, грецких орехов, шампиньонов и вешенок, а также коровьего молока, то может возникнуть риск дефицита витамина РР. Это происходит из-за того, что все названные продукты богаты его антивитамином — аминокислотой лейцином. Здесь же добавлю, что сырая фасоль и соя также сводят на нет действие витамина Е.

4. Здесь же отмечу, что антивитаминными свойствами обладают все антибиотики. А самым активным антивитамином является ацетилсалициловая кислота. Она полностью выводит витамин С, способствует вымыванию калия и кальция.

Как бороться с антивитаминами?!

Сразу скажу, кроме разумного подхода к Вашему питанию и образу жизни ничего делать не требуется!:) Во-первых, многие антивитамины в сырых овощах и других продуктах разрушаются при нагревании, но если говорить совсем откровенно, то при тепловой обработке от витаминов тоже остаётся незначительная часть… Поэтому тепловая обработка — это решение не для всех! А вот варианты, которые подойдут каждому:

Запомнить основные источники антивитаминов и не употреблять их с источниками соответствующих витаминов.

Стараться долго не хранить приготовленную или нарезанную еду — сразу употреблять в пищу!

Полностью отказаться от приёма антибиотиков (естественно, кроме ситуаций, где от этого зависит жизнь человека), перейти на альтернативные методы лечения — фитотерапия, натуропатия и др.

Полностью отказаться от употребления алкоголя и табакокурения. Алкоголь разрушает витамины В, С, К, а курение оставляет организм без витамина С.

Ну вот и всё, что я хотел рассказать Вам об антивитаминах. Если Вам понравилась статья, то подпишитесь на наш блог и вскоре мы порадуем Вас ещё чем-нибудь интересненьким!


По механизму действия среди антивитаминов различают ингибиторы деструкторы, комплексообразователи и депрессоры.

Ингибиторы - вещества, похожие по своему строению на тот или иной витамин, вследствие чего они могут или ухудшить его всасывание (конкуренция) или занять его место в коферменте, что ведет к инактивации фермента. Катехины, галактафеавин, 3, 4-дегидрооксикоригенная кислота, содержащаяся в ягодах черники - ингибируют витамин B 1 , противотуберкулезные лекарственные препараты - тубазид, фтивазид, циклосерин ингибируют действие витаминов B 6 и РР; перетиамин - действие B 1 ; акрихин и биомицин - действие B 2 ; g – глюкоаскорбиновая кислота - действие витамина С; сульфаниламиды и ПАСК - действие парааминобензойной кислоты; аметоптерин (метатрексат) - действие; фолиевой кислоты.

Деструкторы - разрушают витамины в пищевых продуктах или организме. Так, во многих растениях, исключая цитрусовые, содержится фермент аскорбиназа, окисляющий витамин С; в состав сырой рыбы входит тиаминаза, разрушающая тиамин; оксидаза, присутствующая в жирах, разрушает каротины, витамин А и токоферролы.

Ускоряют процесс разрушения витаминов многие химические элементы - катализаторы окисления (железо, медь, серебро, кобальт, свинец витамин B 12 никотиновая кислота и др.). Деструкторами витаминов С, B 1 , B 2 , К и др. являются гидроксильные ионы, водородные ионы разрушают фолиевую и пантотеновую кислоты, кислород - витамин С; УФЛ,рентгеновские и гамма-лучи (холодная стерилизация продуктов) - витамины С, В 1 , B 6 , B 12 , A, E, К и др. Нитраты и нитриты тормозят образование витамина А из каротина; двуокись хлора, применяемая для отбеливания муки разрушает полиненасыщенные жирные кислоте (витамины F).

Комплексообразователи связывают витамины в неусваивающиеся комплексы например, авидин, содержащийся в яичном белке связывает биотин, некоторые продукты окисляют вещества растительного происхождения, образуя неусваиваемый С-аскорбиген, окись этилена, используемая в качестве дезсредства (окуривание продуктов), образует с нитотинеамидом неактивный комплекс.

Депрессоры угнетают некоторые биохимические процессы в организме, протекающие с участием витаминов - гормонов и прогормонов. К ним относятся широко распространенные лекарственные препараты - антиперетики, в частности салицилаты, а также дикумарин.

Эти соединения угнетают синтез белков, участвующих в свертывании крови, регулятором которого является витамин К. Кроме того, названные вещества ингибируют синтез тканевых гормонов (простагландинов) из их предшественников - высоконенасыщенных жирных кислот.



Согласно современным представлениям, к антивитаминам относят две группы соединений:

1-я группа - соединения, являющиеся химическими аналогами витами-

нов, с замещением какой-либо функционально важной группы на неактив-

ный радикал, т. е. это частный случай классических антиметаболитов;

2-я группа - соединения, тем или иным образом специфически инакти- вирующие витамины, например, с помощью их модификации или ограничи- вающие их биологическую активность.

Если классифицировать антивитамины по характеру действия, как это принято в биохимии, то первая (антиметаболитная) группа может рассматри- ваться в качестве конкурентных ингибиторов, а вторая - неконкурентных, причем во вторую группу попадают весьма разнообразные по своей химиче- ской природе соединения и даже сами витамины, способные в ряде случаев ограничивать действие друг друга.

Таким образом, антивитамины - это соединения различной природы,

обладающие способностью уменьшать или полностью ликвидировать специ- фический эффект витаминов, независимо от механизма действия этих вита- минов.

Рассмотрим некоторые конкретные примеры соединений, имеющих яр-

ко выраженную антивитаминную активность.

Лейцин - нарушает обмен триптофана, в результате чего блокируется образование из триптофана ниацина - одного из важнейших водораствори- мых витаминов - витамина PP. Сорго имеет антивитаминное действие в от- ношении витамина РР за счет избытка лейцина.

Индолилуксусная кислота и ацетилпиридин - также являются антиви-

таминами по отношению к витамину РР; содержатся в кукурузе. Чрезмерное


употребление продуктов, содержащих вышеуказанные соединения, может усиливать развитие пеллагры, обусловленной дефицитом витамина PP.

Аскорбатоксидаза, полифенолоксидазы и некоторые другие окисли-

тельные ферменты проявляют антивитаминную активность по отношению к витамину С (аскорбиновой кислоте). Аскорбатоксидаза катализирует реак- цию окисления аскорбиновой кислоты в дегидроаскорбиновую кислоту:

Аскорбиновая кислота дегидроаскорбиновая кислота

В измельченном растительном сырье за 6 часов хранения теряется бо- лее половины витамина С, т.к. при измельчении нарушается целостность клетки и возникают благоприятные условия для взаимодействия фермента и субстрата. Поэтому рекомендуют пить соки непосредственно после их изго- товления или потреблять овощи, фрукты и ягоды в натуральном виде, избе- гая их измельчения и приготовления различных салатов.

В организме человека дегидроаскорбиновая кислота способна прояв-

лять в полной мере биологическую активность витамина С, восстанавливаясь под действием глутатионредуктазы. Вне организма она характеризуется вы- сокой степенью термолабильности: полностью разрушается в нейтральной среде при нагревании до 60 °С в течение 10 мин, в щелочной среде - при комнатной температуре.

Активность аскорбатоксидазы подавляется под влиянием флавоноидов,

1-3-минутном прогревании сырья при 100 °С. Учет активности аскорбаток- сидазы имеет большое значение при решении ряда технологических вопро- сов, связанных с сохранением витаминов в пище.

Тиаминаза - антивитаминный фактор для витамина B1 - тиамина. Она содержится в продуктах растительного и животного происхождения, обу- словливая расщепление части тиамина в пищевых продуктах в процессе их изготовления и хранения.


Таблица 2.1

Массовая доля аскорбиновой кислоты и активность аскорбатоксидазы в продуктах растительного происхождения

Продукты Массовая доля аскорбиновой кислоты, мг/100 г Активность аскорбатоксидазы, мг окисленного субстрата за 1 ч в 1 г
Картофель свежеубранный 20…30 1,34
Капуста: белокочанная брюссельская кольраби цветная 40…50 1,13 18,3 19,8
Морковь 2,6
Лук репчатый
Баклажаны 5…8 2,1
Огурцы
Хрен 6,3
Дыня Следы
Арбуз 2,3
Тыква 11,6
Кабачки 57,7
Сельдерей
Петрушка 15,7
Яблоки 5…20 0,9…2,8
Виноград 1,5…3,0
Смородина черная 150…200
Апельсины
Мандарины
Шиповник

Наибольшее содержание этого фермента отмечено у пресноводных рыб (в частности, у семейств карповых, сельдевых, корюшковых). Потребление в пищу сырой рыбы и привычка жевать бетель у некоторых народностей (на- пример, жителей Таиланда) приводят к развитию недостаточности витамина В1. Однако у трески, наваги, бычков и ряда других морских рыб этот фермент полностью отсутствует.

Возникновение дефицита тиамина у людей может быть обусловлено наличием в кишечном тракте бактерий (Вас. thiaminolytic, Вас. anekri- nolytieny), продуцирующих тиаминазу. Тиаминазную болезнь в этом случае рассматривают как одну из форм дисбактериоза.

Тиаминаза, в отличие от аскорбатоксидазы, «работает» внутри орга-

низма человека, создавая при определенных условиях дефицит тиамина.


Найден антивитаминный фактор в составе кофе. Тиаминазы раститель- ного и животного происхождения вызывают разрушение части тиамина в различных пищевых продуктах при хранении. В семенах льна обнаружен ли- натин - антагонист пиридоксина (витамина В6), в проростках гороха - анти- витамины биотина и пантотеновой кислоты.

В сырой сое присутствует липоксидаза , которая окисляет каротин. Это действие фермента исчезает после нагревания.

Дикумарол (3,3-метиленбис-4-гидроксикумарин), содержащийся в дон- нике (Melilotus officinalis), приводит к падению уровня протромбина у чело- века и животных за счет противодействия витамину К.

Ортодифенолы и биофлавоноиды (вещества с Р-витаминной активно- стью), содержащиеся в кофе и чае, а также окситиамин, который образуется при длительном кипячении кислых ягод и фруктов, проявляют антивитамин- ную активность по отношению к тиамину.

Все это необходимо учитывать при употреблении, приготовлении и

хранении пищевых продуктов.

Линатин - антагонист витамина В6, содержится в семенах льна. Кроме этого, ингибиторы пиродоксалевых ферментов обнаружены в съедобных грибах и некоторых видах семян бобовых.

Авидин - белковая фракция, содержащаяся в яичном белке. Избыточное

потребление сырых яиц приводит к дефициту биотина (витамина Н), так как авидин связывает витамин в неусвояемое соединение. Тепловая обработка яиц приводит к денатурации белка и лишает его антивитаминных свойств.

Гидрогенизированные жиры - являются факторами, снижающими со- хранность витамина А (ретинола). Эти данные свидетельствуют о необходи- мости щадящей тепловой обработки жироемких продуктов, содержащих ре- тинол.

Говоря об антиалиментарных факторах питания, нельзя не сказать о гипервитаминозах. Известны два типа: гипервитаминоз А и гипервитаминоз

D. Например, печень северных морских животных несъедобна из-за большо-

Приведенные данные свидетельствуют о необходимости дальнейшего тщательного изучения вопросов, связанных с взаимодействием различных природных компонентов пищевого сырья и продуктов питания, влияния на них различных способов технологической и кулинарной обработки, а также режимов и сроков хранения с целью снижения потерь ценных макро- и мик- ронутриентов и обеспечения рациональности и адекватности питания.

В. М. АБАКУМОВ, кандидат медицинских наук

История антивитаминов началась лет пятьдесят назад с одной, поначалу, казалось бы, неудачи. Химики решили синтезировать витамин В с (фолиевую кислоту) и заодно несколько усилить его биологические свойства.

Этот витамин, как известно, участвует в биосинтезе белка и активизирует процессы кроветворения. Следовательно, в процессах жизнедеятельности ему отводится далеко не второстепенная роль.

А химический аналог полностью утратил витаминную активность. Но оказалось, что новое соединение тормозит развитие клеток, прежде всего раковых. Оно вошло в реестр эффективных противоопухолевых средств для лечения больных некоторыми злокачественными новообразованиями.

Стремясь понять механизм лечебного эффекта препарата, биохимики установили, что он является... антагонистом витамина В с. Его лечебное действие обусловлено тем, что он, вторгаясь в сложную цепочку химических реакций, нарушает превращение фолиевой кислоты в кофермент.

Соединения, противоборствующие некоторым витаминам, обнаружились и в ряде пищевых продуктов. Специалисты обратили внимание на то, что включение в рацион лисиц сырого карпа вызывало у животных развитие типичного состояния В 1 - авитаминоза. Позже было установлено, что в тканях сырого карпа содержится фермент тиаминаза, расщепляющий молекулу витамина В 1 (тиамина) до неактивных соединений.

Этот фермент затем был обнаружен и в других рыбах, причем не только пресноводных. Так, обследуя жителей Таиланда, врачи выявили у многих дефицит тиамина. Но почему? Ведь с пищей витамина поступало вполне достаточно. Последующие исследования показали, что виновница В 1 - недостаточности - все та же тиаминаза. Она содержится в рыбе, которую население в больших количествах использует в питании в сыром виде.

Более широкие исследования позволили обнаружить и другие В 1 - антивитаминные факторы в продуктах растительного происхождения. Например, из ягод черники выделена так называемая 3,4-дигидрооксикоричная кислота. 1,8 миллиграмма ее достаточно для нейтрализации 1 миллиграмма тиамина. Выяснилось, что антитиаминовые факторы содержатся и в других пищевых продуктах: рисе, шпинате, вишне, брюссельской капусте и т.д.

Впрочем, интенсивность их антивитаминного действия настолько незначительна, что существенного значения в развитии В 1 - гиповитаминоза они практически не имеют. Несомненный интерес представляет открытие антивитаминного фактора в кофе. Причем в отличие, скажем, от тиаминазы рыб он не разрушается при нагревании.

В овощах и фруктах, больше всего в огурцах, кабачках, цветной капусте и тыкве, содержится аскорбатоксидаза. Этот фермент ускоряет окисление витамина С до практически неактивной дикетогулоновой кислоты. А так как, выяснилось, это происходит вне организма, то витамин С разрушается в растительных продуктах при их длительном хранении и во время кулинарной обработки. Например, только за счет действия аскорбатоксидазы смесь сырых размельченных овощей за 6 часов хранения теряет более половины содержащегося в ней витамина С, причем потери его тем выше, чем больше измельчены овощи.

Соевый белок, особенно в сочетании с кукурузным маслом, способен нейтрализовать действие витамина Е (токоферола). Происходит это в связи с тем, что в сое содержатся пока еще не выделенные в чистом виде антивитамины токоферола. Подобный эффект наблюдается и при употреблении сырой фасоли. Термическая обработка этих продуктов приводит к разрушению соперника витамина Е.

Очевидно, такого рода факты следует учитывать тем, кто пропагандирует и увлекается «сыроедением»!.. Антивитамины обнаружены сравнительно недавно, и неизвестно, все ли «антисоединения» уже найдены в сырых натуральных продуктах.

В частности, в экспериментах на животных установлено, что в составе соевых бобов имеется белковое соединение, которое способствует развитию рахита даже при нормальном поступлении с пищей витамина D, кальция и фосфора. Оказалось, что нагревание соевой муки разрушает антивитамины, при этом, естественно, его отрицательных свойств можно не опасаться.

Отрицательных ли? А нельзя эти свойства использовать в медицинской практике при лечении D-гипервитаминозных состояний? Это еще предстоит доказать.

А вот антивитамин К уже вошел в арсенал лекарственных средств. Интересна история его создания. Специалисты выясняли причину так называемой болезни сладкого клевера у сельскохозяйственных животных, один из симптомов которой - плохая свертываемость крови. Оказалось, что в клеверном сене содержится антивитамин К - дикумарин.

Витамин К способствует свертыванию крови, а дикумарин нарушает этот процесс. Так возникла идея, воплощенная затем в жизнь, использовать дикумарин для лечения различных заболеваний, обусловленных повышенной свертываемостью крови.

Незначительно изменив структуру витамина В 3 (пантотеновой кислоты), химики получили вещество с противоположными витамину свойствами. В процессе длительного экспериментального изучения нового соединения была выявлена не присущая пантотеновой кислоте психотропная активность. Оказалось, что антивитамин В 3 - пантогам обладает умеренным успокаивающим действием и способен оказывать противосудорожный эффект.

Соединив две молекулы витамина В 6 , специалисты синтезировали вещество, которое может рассматриваться как его антагонист. Затем выяснилось, что вновь полученное соединение (его называют пиридитол, энцефабол и т.д.) благоприятно влияет на некоторые ключевые обменные процессы в тканях головного мозга.

Под воздействием пиридитола улучшается утилизация глюкозы клетками головного мозга, нормализуется транспорт фосфатов через гематоэнцефалический барьер, повышается их содержание в головном мозгу. В результате и этот антивитамин нашел применение в клинической практике.

В ходе изучения антивитаминов и использования их в качестве лекарственных средств возник вопрос: а каков же механизм действия такого рода химических соединений? О витаминах известно, что они в организме человека превращаются в более активные в биологическом отношении коферменты, которые, в свою очередь, вступая во взаимодействие со специфическими белками, образуют ферменты - катализаторы разнообразных биохимических процессов. А антивитамины?

Имея близкое с витаминами структурное сходство, эти соперники витаминов, возможно, трансформируются в организме человека по тем же законам, что и их «родоначальники», превращаясь в ложный кофермент. В дальнейшем он, вступая во взаимодействие со специфическим белком, подменяет собой истинный кофермент соответствующего витамина. Заняв его место, антивитамин в то же время не выполняет биологической роли витамина.

Фермент «обманут». Он не замечает химического отличия между истинным коферментом и его соперником и по-прежнему стремится выполнить свою функцию катализатора. Но это ему уже не удается. Соответствующие процессы обмена веществ остановлены - они не могут протекать без участия катализатора. Не исключено при этом, что возникший псевдофермент начинает играть присущую уже только ему биохимическую роль, и это обусловливает спектр фармакотерапевтического действия антивитамина.

Возможно, именно подобные изменения структуры лежат в основе терапевтического действия «универсальных» антивитаминов, какими являются эффективные противотуберкулезные средства изониазид и фтивазид. Они нарушают в микобактериях туберкулеза обменные процессы не только витамина В 6 , но и тиамина, витаминов В 3 , РР и В 2 , благодаря чему задерживают рост и размножение возбудителей заболевания. Аналогичный механизм, очевидно, определяет и действие некоторых противомалярийных препаратов - акрихина и хинина, являющихся антагонистами рибофлавина (витамина В 2).

Означают ли приведенные примеры, что каждый из синтетических антивитаминов может найти применение в медицинской практике? Нет.

К настоящему времени химики различных стран синтезировали сотни, а может быть, тысячи разнообразных производных витаминов, среди которых многие имеют антивитаминные свойства. Но далеко не все из них оказались в арсенале лекарственных средств: мала фармакобиологическая активность. Однако целесообразность дальнейших исследований свойств витаминов и их производных не вызывает сомнений. И, как знать, может быть, именно среди антагонистов витаминов будут обнаружены новые средства борьбы с заболеваниями.

В заключение одна необходимая оговорка. В продуктах питания соотношение витаминов и антивитаминов сохраняется, как правило, в пользу первых. Прием антивитаминов как лекарственных средств это соотношение может нарушить. Поэтому при необходимости врачи наряду с антивитаминами назначают дополнительно и соответствующий витамин или коферментные препараты.

К слову, это еще один довод против самолечения: ведь закономерности действия антивитаминов, их противоборства витаминам известны только врачу.

Один из ПРИРОДНЫХ антивитаминов - аскорбатоксидаза (АО) при длительном хранении огурца разрушает в нем витамин С.
Через 6 часов хранения сырых измельченных овощей и фруктов в них разрушается более половины витамина С: потери его тем значительнее. чем больше степень измельчения.

Некоторые СИНТЕТИЧЕСКИЕ антивитамины обогатили арсенал лекарственных средств.

Изучая химические производ ные витаминов, биохимики, фармакологи и клиницисты обнаружили соединения как с витаминными, так и с антивитаминными свойствами. Неко торые из антивитаминов уже вошли в клиническую практику как лекарства; другие находятся в стадии изучения.

Рисунок С. ЛУХИНА

В. Б. СПИРИЧЕВ, профессор,
Т. В. РЫМАРЕНКО, кандидат медицинских наук

Витамин С, или аскорбиновая кислота, - безусловно, самый популярный из витаминов. Еще в то время, когда о нем ничего не было известно, врачи замечали, что у больных цингой (авитаминоз С) открываются старые раны, а новые плохо рубцуются.

Теперь мы знаем, что объясняется это нарушением образования важного для заживления ран белка - коллагена. Этот белок связывает отдельные клетки в единое целое, а аскорбиновая кислота необходима для его синтеза в организме.

Столь же она необходима для продукции другого соединительнотканного белка - эластина, создающего основу стенок кровеносных сосудов. Вот почему при недостатке витамина С стенки сосудов, особенно мелких, становятся хрупкими. Их ломкость приводит к кровоточивости, на коже появляются многочисленные кровоизлияния, «привычные» синяки.

Незаменимые факторы пищи и работоспособность

Примечание: Ряд авторов с успехом использовали большие дозы витамина C (0,3-1 г) при утомлении, интенсивных тренировках (Яковлев, 1962). Мегадозы витамина C (2-3 г в сутки) рекомендовал нобелевский лауреат Л. Полинг (1974) с целью увеличения резистентности к инфекции и снижения проницаемости капилляров. Однако при этом выявлено токсическое действие на поджелудочную железу, почки и др.



Понравилась статья? Поделитесь ей